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ABSTRACT Client contribution evaluation is crucial in federated learning(FL) to effectively select influen-
tial clients. Contrary to data valuation in centralized settings, client contribution evaluation in FL faces a lack
of data accessibility and consequently challenges stable quantification of the impact of data heterogeneity.
To address this instability of client contribution evaluation, we introduce an empirical method, Federated
Client Contribution Evaluation through Accuracy Approximation(FedCCEA), which exploits data size as a
tool for client contribution evaluation. After several FL simulations, FedCCEA approximates the test accu-
racy using the sampled data size and extracts the client contribution from the trained accuracy approximator.
In addition, FedCCEA grants data size diversification, which reduces the massive variation in accuracy
resulting from game-theoretic strategies. Several experiments have shown that FedCCEA strengthens the
robustness to diverse heterogeneous data environments and the practicality of partial participation.

INDEX TERMS Client contribution, client selection, data valuation, data heterogeneity, federated learning,
incentive mechanism, shapley value.

I. INTRODUCTION
Federated Learning(FL) [1], [2], [3], [4] is an emerging field
in distributed machine learning. It aggregates different mod-
els of clients in distributed systems without accessing data.
Research on FL focuses on various approaches that attempt
to reach a similar performance to centralized, optimalmodels.

In a data-centric approach, FL considers the data quality by
measuring contribution at the client level. Client contribution
is generally defined as the impact of a dataset for each client
on the federated model performance. Measurement of client
contribution is applied to two specific aspects of improving
the federated model.

A. CLIENT SELECTION
Regarding the context of deep learning models, not all
data have equal value [5]. Thus, preserving and discard-
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ing high- and low-quality data is a prerequisite to training
a high-performing deep learning model [6]. Similarly, not
all clients contribute equally to federated settings [7], [8],
[9], [10]. Closely monitoring these clients and measuring
the contribution of each client should be achieved to select
influential clients and remove unneeded ones.

B. INCENTIVE ALLOCATION
Economically, client contribution is a suitable standard for
allocating incentives fairly, while maximizing profit [11],
[12], [13], [14], [15]. A proper incentive allocation with
client contribution maymotivate high-contributors to actively
participate in FL, where the amount of high-quality data in
each client affects the model accuracy. This incentive mecha-
nismmay facilitate the efficient management of revenues and
costs in a business systemwith a highly-performing federated
model by the central server (or coordinator).

Then the question is, ‘‘how do we evaluate the client
contribution in the FL setting?’’ Unfortunately, a different
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FIGURE 1. Examples of the combinatorial impact of client A in a single
round with different combinations.

view from data valuation of centralized learning is required.
In centralized data environments, the data value is measured
based on data characteristics, such as the presence of samples
with uncommon features [16], [17] and the presence of data
corruptions [6], [18]. In contrast to centralized data environ-
ments, evaluating the contribution in FL environments with
the actual data characteristics is impossible.

In particular, the central server cannot measure the exact
impact of the data characteristics (or data heterogeneity) in
FL environments. First, the blockage of accessing data
restricts the server from analyzing the data heterogeneity of
each local dataset [19]. This indicates that the server cannot
directly seek and estimate the data distribution among the
clients or the fraction of noisy data. Only local gradients,
weights, and data sizes can be obtained from individual
clients during the aggregation. Thus, the server can evaluate
contribution only by this limited information.

Moreover, the impact of data distribution, noise, and data
quantity is not as clear as in centralized settings because they
strongly rely on combinations with other clients. As shown
in Fig. 1, a single client can be a low contributor with
some combinations ((a)) that update the global weight
away from the optimal weight. On the contrary, it can
also be a high contributor with different combinations ((b))
that update the global weight closer to the optimal weight.
This double-faced combinatorial result causes an unstable
impact of the data heterogeneity on the federated model
performance.

From early explorations, Shapley Value [8], [20], a game-
theoretic evaluation method, predicts the overall combina-
torial impact of clients on performance by averaging the
marginal test accuracy with all the possible client subsets
including and excluding a client as shown in Fig. 2. Although
it is a theoretically well-structured evaluation method, the
client contribution measurement by Shapley Value faces

FIGURE 2. Data use cases of each contribution evaluation method while
measuring contribution of client A. Regarding the game-theoretic
methods, full or no data of client A are used to compare the global
updates, including and excluding client A. On the contrary, FedCCEA
enables several simulations with data size diversification to analyze the
impact of client A on model performance, while considering various data
size sets.

challenges with extreme accuracy fluctuations of some com-
binations in heterogeneous data environments. These drastic
combinatorial effects result in unstable client contribution
estimates.1

To make a stable and precise quantification of the impact
of data heterogeneity, we introduce a novel, empirical evalu-
ation of client contributions using data size. Federated Client
Contribution Evaluation through Accuracy Approximation,
also known as FedCCEA, predicts the client contribution
through a deep learning model named accuracy approxima-
tion model(AAM). Contrary to previous studies that only
considered full or no data use, FedCCEA diversifies the
proportion of data used in every round to stabilize client
contribution measurement. This data size diversification may
strengthen the robustness in any real-world decentralized set-
ting and even allow the contribution measurement of partial
participation with a free choice of data size. We demonstrate
our strengths through experiments using three public image
sets [21], [22], [23] and different data distribution settings.

This study provides three following main contributions:
1) To the best of our knowledge, this is the first empirical

method that allows the partial participation of clients
and exploits data size sets for a client contribution
evaluation in FL.

2) We empirically measure client contribution through
deep learning models with diversified data size combi-
nations to make a stable contribution evaluation in any
data setting.

3) We also conduct extensive experiments on three pub-
lic image sets in real-world environments, such as
non-IIDs and data corruptions. We empirically analyze
the robustness to diverse heterogeneous data situations
and the practicality of data size selection.

1The descriptions are mentioned in Section IV-B
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TABLE 1. Summary of client contribution evaluation methods for federated learning.

II. RELATED WORKS
A. DATA VALUATION
Data Valuation, a phrase similar to Client Contribution
Evaluation, has been widely studied recently to improve
centralized machine learning models and to explain black-
box predictions. The leave-one-out(LOO) method [30], [31]
and the influence function [30], [31], [32] measured the
counterfactual of a batch and verified whether the perfor-
mance has changed owing to the batch. However, these
perturbation-based methods performed poorly. For example,
two identical but influential points do not value as high as
they exist together.

Shapley Value [33], a classical concept in cooperative
game theory, is on the rise in machine learning to tackle the
poor performance of LOO. In contrast to LOO, Data Shap-
ley [20] compared all possible training data combinations
which a single datum is included and excluded. Moreover,
several efficient methods to approximate the actual Shapley
Value, such as Monte-Carlo SV and gradient-based SV [20],
attempted to reduce the computational inefficiency that actual
Data Shapley suffers. However, the issue of the high compu-
tational complexity of data valuation remains. Data Shapley
costs O(2N ) of computational complexity for data valuation,
and Monte-Carlo SV costs O(N logN ).

Subsequently, empirical methods of data valuation
have been introduced as alternatives to theory-based
data valuation. Data valuation using reinforcement learn-
ing(DVRL) [34] is a meta-learning framework that jointly
learns the data value and trains the primary model using
reinforcement learning. This method robustly approximates
data values, even for low-quality datasets or other-domain
samples. Moreover, it achieves high performance in machine
learning tasks by removing parts of the low-valued ones.

B. CLIENT CONTRIBUTION EVALUATION FOR FL
In addition to a model-centric approach that focuses on
FL optimization [35], [36], [37], [38], the client contribu-
tion evaluation in our study is a data-centric solution to the
client-drift problem of FedAvg [2]. The server provides more
credit to major clients and fewer credit to minor clients.

Despite advances in data valuation methods in centralized
machine learning, only a few techniques can be applied
in federated environments owing to data blockages. Local
gradients, local weights, and local data sizes are the only
possible information that the server can use as a tool for client
contribution evaluation. [2], [19]

In particular, LOO [14], [24] and Shapley Value [8] are
applicable valuation methods in distributed systems that use
local weights or gradients as a tool for client contribution
evaluation. While these game-theoretic methods are time-
consuming, a simple approximation for LOO [24] and Shap-
ley Value [20], [25], [26], [39] makes the client contribution
calculation feasible with a theoretical base.

Subsequently, evaluation methods using weight or gradient
differences were introduced. RRAFL [27] considered the
directional difference between the global model and local
weight vectors, assuming that a lower angle contributes more.
Empirically, F-RCCE [28] and FAVOR [29] applied REIN-
FORCE and DQN models with local weights and gradients
to find the best strategies for client selection to optimize the
federated model regarding the measured client contribution.

On the other hand, the information of local data size
has rarely been exploited for client contribution evaluation
because a large amount of data does not clearly lead to a
higher contribution in federated learning when data hetero-
geneity exists. Previously, the local data size was defined as
a client contribution for simple construction of a DRL-based
incentivemechanism [12] with strong assumptions. However,
in addition to the local data size, quantification of the impact
of data heterogeneity(e.g. data corruption and non-IID) is
required to correctly measure the client contribution in any
data environment.

III. PROPOSED METHOD
FedCCEA consists of two phases: simulator and evaluator.
The simulator is the preparation step of the evaluation by
simulating the FL procedures to obtain the inputs(sampled
data size) and targets(round-wise accuracy) of the AAM
in the evaluator. After all FL simulations are completed,
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FIGURE 3. Overall mechanism of FedCCEA. Through data size diversification, FL simulations, and testing in the Simulator Phase, data size
and round-wise test accuracy sets are stored. Then, in the Evaluator Phase, these round-wise samples are reorganized by zero-padding and
are used as inputs and targets of the Accuracy Approximation. We finally extract the client contribution value of client i (vi ) from the AAM.

the evaluator predicts the client contribution of each client
through the AAM.

A. SIMULATOR
We denote n ∈ N, R ∈ N, and S ∈ N as the number of
participating clients, rounds per FL simulation, and number
of FL simulations, respectively. Moreover, we construct D(i)

of the training dataset for each client i and denote | D(i)
| as

the total data size for each client. Nevertheless, D(i) is not
used during the testing step; the simulator uses a separate
test set Dt .2 The main task of the simulator is to implement
FL simulations to obtain a set of sampled data size(xr,s)
and round-wise accuracy(accr,s). Therefore, we execute the
simulator in three steps: data size diversification, a single
FL iteration, and testing. The entire routine of these three
steps is a single round of one FL simulation, and we repeat
the R-rounds FL simulations S times as initially indicated.

1) DATA SIZE DIVERSIFICATION
Considering the FL environment, each client freely selects
the size of its local training data for the FL in each round.
To observe all possible actions of clients, we expand the cases
of data size selection by randomly selecting the proportion
in the uniform distribution between zero and one: pr,s =
(p(1)r,s, p

(2)
r,s, . . . , p

(n)
r,s) ∼ U(0, 1). We turn the proportion vector

to a real data size vector dr,s for use in a single FL iteration
step. Therefore, to store the data size vector in a normalized
term for evaluation, we calculate the standard data size | D |=∑
|D(i)
|

n and determine the scaled data size vector xr,s:

dr,s = (d (1)r,s , d
(2)
r,s , . . . , d

(n)
r,s ) where d (i)r,s =| D(i)

| ×p(i)r,s
(1)

xr,s =
dr,s
| D |

(2)

2The location of the test set depends on the federated system design: the
server side or the client side. Testing the global model is held on the site
where the test set is located.

Algorithm 1: FedCCEA - Procedure of the Simulator
Input: Number of clients n, number of rounds per FL

simulation R, number of simulations S, training
set D(i) for each client i = 1, 2, . . . , n, shared test
set Dt , and standard data size | D |=

∑
|D(i)
|

n

Initialize empty list E ;
for s = 1, 2, . . . , S do

Initialize parameters of the global model θG0 ;
for r = 1, 2, . . . ,R do

Sample a data size proportion vector pr,s
= (p(1)r,s, p

(2)
r,s, . . . , p

(n)
r,s) ∼ U(0, 1);

Derive a real data size vector dr,s =
(d (1)r,s , d

(2)
r,s , . . . , d

(n)
r,s ) where d

(i)
r,s =| D(i)

| ×p(i)r,s;
Derive a scaled data size vector xr,s =

dr,s
|D| ;

Clients Execute:
Collect global parameters θGr−1;
Update local models using dr,s and obtain
θ
(i)
r for each client i;

Collect θr = [θ (1)r , . . . , θ
(n)
r ] from all clients;

Implement FedAvg Algorithm and update θGr ;
Test the updated global model using Dt and
obtain a round-wise test accuracy(accr,s);
Store (xr,s, accr,s) into E ;

return list E

This scaled data size vector xr,s, also defined as sampled
data size, accelerates the convergence of AAM and allows
comparison of the data size between clients.

2) SINGLE FL ITERATION
The subsequent step is a one-round FL classification task.
The global model is a neural network such as an MLP or
a CNN, as hypothesized in this study. During this step, the
central server renews the global model parameter θGr based on
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the sampled data size of the clients. Each client updates their
local model weights θ (i)r using only d (i)r,s of their dataset, which
is their actual size for training in this round. Thereafter, the
central server aggregates the local model weights using the
FedAvg algorithm. Based on the information obtained from
clients, FedAvg is reformulated as follows:

θGr =

n∑
i=1

d (i)r,s∑
j d

(j)
r,s

× θ (i)r (3)

3) TESTING
After a single FL iteration, we evaluate the current perfor-
mance of the federated model using a separate test set Dt .
The metric obtained in this step is accr , which is defined as
the round-wise accuracy until round r .
These three steps are repeated until the final round(R),

then a single FL simulation ends. The sets of round-wise
accuracies obtained from several FL simulations(S) are used
for accuracy approximation in the evaluator phase with the
sampled data size.

B. EVALUATOR
The evaluator phase is independent of the simulator; nonethe-
less, it plays a substantial role in predicting client contribution
from a learned accuracy approximation model. This phase
begins after the simulator phase is completed to ensure that
the evaluator can obtain all stored results from the simulator.

1) ACCURACY APPROXIMATION
The AAM is a regression model that predicts round-wise
accuracy using the sampled data size. This model approxi-
mates the federated test accuracy of the current round r using
the sampled data size sets until the current round. In this
model, the sampled data size in the previous rounds also
affects the round-wise accuracy. For instance, the accuracy
in round r is also affected by the data size set in rounds 1 to
r − 1. Therefore, the sampled data size set can be analyzed
as time series data.

We design the AAM in a combined framework of linear
regressions and a time series model using several distinctive
tools, forming g : Rn×R

−→ [0, 1], as shown in Fig. 4.
This model allows the sampled data size to be considered
sequentially by organizing static-sized inputs with zero-
padding of future actions. In addition, sharedweights enable
the quantification of the averaged impact of the local dataset,
considering a certain data size for each client among the
overall rounds.

a: ZERO-PADDING
An input vector of the AAM,9r ∈ Rn×R, is constructed with
the experienced sampled data size sets. Considering the static
n × R shape, we list the sampled data size sets before the
current round r . Then, we zero-pad the rest of the space.
These are the subsequent actions after round r . For each
sample, we assume that the federated model is continually
trained until round R with clients not participating in FL after

Algorithm 2: FedCCEA - Procedure of the Evaluator
Input: Number of global rounds R, number of

simulations S, and the results from the simulator
E = {(xr,s, accr,s)}r=1,...,R,s=1,...,S ,

Initialize parameters � of AAM;
for s = 1, 2, . . . , S do

for r = 1, 2, . . . ,R do
Construct an input vector 9r,s ∈ Rn×R;
List all data size set xr,s under round r in 9r,s
and zero-pad for the rest;

Collect 9 = {9r,s}r=1,...,R,s=1,...,S and
acc = {accr,s}r=1,...,R,s=1,...,S ;
while until convergence do

Using 9 inputs and acc targets, optimize � from
AAM: g(9;�);

Extract the shared weights(ω) from the Client
Contribution Module;

return weight vector ω

FIGURE 4. Architecture of the AAM. This model aims to approximate
round-wise accuracy(accr ) with sampled data size(x̃ (i )

r ) of all clients(i ) in
all rounds(r ) created from FL simulations.

round r . Fig. 5 demonstrates the construction of zero-padded
input vectors.

b: SHARED WEIGHTS
The focal point of the architecture is on the first layer of
AAM, which contains shared weights ω ∈ Rn. Shared
weights are widely used in CNN architectures as convolu-
tion filter shapes to extract the local features of image data.
Similarly, the client contribution module is structured with
round-wise shared weights to extract the averaged impact of
the data heterogeneity for each client.

The inputs are split into R round sets, expressed as 9r =

(x̃(1)r , x̃(2)r , . . . , x̃(n)r ) for each set. Themodel initially designs a
linear regression for each round set asXr (9r ;ω) = x̃(1)r ω(1)

+

x̃(2)r ω(2)
+ . . . + x̃(n)r ω(n) using the shared parameter vec-

tor ω = (ω(1), ω(2), . . . , ω(n)). Moreover, Xr represents the
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FIGURE 5. Construction of input vector set(9r ) for AAM. The elements of
9r ∈ Rn×R that are beyond round r are zero-padded.

round-wise latent impact of federated learning with all clients
using 9r in round r .

c: APPROXIMATOR MODULE
The remaining layers of the AAM are constituted as a many-
to-one time series architecture, f : X −→ [0, 1], which
returns a single approximated accuracy. The concatenated
vector X = (X1,X2, . . . ,XR), originating from the linear
regressions Xr (9r ;ω), is the input of these layers. While
X indicates the latent impact of all clients in each round
with a given data size set, the approximator module may be
closely related to the round-wise impact with the given latent
variables. Any type of sequence model is possible in this
module; nonetheless, the model must perform well for the
approximation of the test accuracy. For example, regarding
task difficulty, we use a simple MLP [40] for MNIST and
CIFAR-10 classification tasks and LSTM [41] frameworks
for the EMNIST classification task. Hence, we formulate the
corresponding optimization problem of the AAM as:

min
�

L(g(9;�), acc)

= min
ω,�−ω

L(f ((X1, . . . ,XR);�−ω), acc) (4)

From Eq. 4, the latent values (X1, . . . ,XR) are outputs
of the client contributionmodule(X1(91;ω), . . . ,XR(9R;ω))
with given data size samples(9), where ω ∈ � refers to
the shared weight vector in the client contribution module.
In addition, f (X1, . . . ,XR) is the approximator module with
the weight vector �−ω ∈ � that predicts the round-wise
accuracy(acc). We use the root mean squared error as the loss
term of the AAM.

2) CLIENT CONTRIBUTION MEASUREMENT
Because quantifying the exact impact of data heterogeneity
for each client is unfeasible in FL, we indirectly predict
the latent impact of data heterogeneity in the client contri-
bution module. The shared weight vector(ω) represents the
importance of the data size set to the latent variable Xs.
We interpret ω(i) as the averaged impact of data heterogene-
ity for client i when x(i) = 1. This index may indirectly
include the combinatorial impact of the data distribution

among clients and the noise fraction on federated model
performance. In addition, the data size is an essential element
that affects the performance of the federated model. Thus, the
client contribution is formulated as the predicted latent impact
of data heterogeneity(w(i)) with an extra weight of given data
size(x(i)):

Client Contribution Value(vi) = x(i) × ω(i). (5)

IV. EXPERIMENTS
In this section, we want to answer the following questions:

1) How does accuracy variation occur in the Shapley
Value evaluation and how does FedCCEA address this
problem?

2) Is FedCCEA evaluation accurate even in the strong
non-IID and noisy environments?

3) Is FedCCEA evaluation accurate even with partial
participation?

To answer each question, we design (i) an accuracy vari-
ation comparison, (ii) a client removal test, and (iii) a client
removal test for partial participation. Moreover, we conduct
additional client removal tests and experiments for complex-
ity analysis with different numbers of clients.

A. BASIC EXPERIMENTAL SETTINGS
1) BASELINE EVALUATION METHODS
We answer the above questions and prove the strengths by
comparing FedCCEA to the three baseline evaluation meth-
ods in recent studies.
• RoundSV [8], [39] is an approximation of Shapley
Value in FL. We use the permutation-based RoundSV,
utilizing Monte-Carlo sampling for SV approximation.

• Fed-Influence in Accuracy(FIA) [24] is a type of
Fed-Influence measurement metric that simply mea-
sures the influence by investigating the effect of remov-
ing a client only. The actual FIA value can be obtained
from the results of the leave-one-out test.

• RRAFL [27] measures the contribution of cosine simi-
larity between the final global weight vector and current
local weight vectors.

2) DATA DISTRIBUTION SETTINGS
We design diverse data distribution settings to answer these
three questions. We diversify the degree of data heterogeneity
based on the number of classes contained in each client and
the presence of label noise. The detailed statistics of the data
distribution settings are presented in Table 2. Specifically,
we define the Earth Mover’s Distance(ρ) [42], [43] between
the distribution over classes on each client and the population
distribution as the overall degree of IIDness.

For Experiment 1 in Section IV-B, we construct setting C.1
by assigning all data of the selected classes(|P| = 2) to five
clients(|C| = 5). This may result in a high mean of ρ among
clients. Moreover, 40% label noise3 is injected into client

3e.g., change label ‘4’ to ‘5’.
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TABLE 2. Detailed statistics of data distribution settings. (|C |: number of clients, |P|: number of classes contained for each client, ρ: Earth Mover’s
Distance(Data Distribution), |D(i )|/

∑
|D(i )|: scaled data size, ξ : presence of noise, |Cξ |: number of noisy clients).

A for more extreme data heterogeneity. This setting is used
to empirically observe the unstable combinatorial effect of a
client and the extreme accuracy variations of game-theoretic
methods in non-IID.

For Experiments 2 and 3 in Sections IV-C and IV-D,
20 clients are constructed with a limited number of
classes(|P|) of the MNIST, EMNIST, and CIFAR-10 dataset.
The settings with each client having all classes in an identical
distribution are defined as IID. On the contrary, settings with
each client having half or a few classes are defined as weak
and strong non-IID. The mean of ρ increases as the degree
of non-IID increases. Furthermore, for the weak and strong
non-IID of each dataset, we assign 40% label noise(ξ ) to four
clients(|Cξ | = 4).4

3) FEDERATED LEARNING SIMULATION SETTINGS
Regarding the proper operation of FedCCEA, the config-
urations of federated learning simulations and a federated
model should be set before the simulator phase. Three- and
two-layerMLPs are constructed for theMNIST and EMNIST
classification tasks, respectively, while two-layer CNNs are
constructed for the CIFAR-10 classification task. In addi-
tion, we implement 100 simulations(S) for federated learning.
Although 50 rounds are implemented for each simulation for
the MNIST and EMNIST datasets, we implement 100 rounds
for CIFAR-10 to improve themodel. To reduce computational
costs and enhance model performance in the EMNIST and
CIFAR-10 classification task, we increase the initial learning
rate and batch size compared with the MNIST classification
task.

4We do not conduct the strong non-IID setting for CIFAR-10, because the
federated model is not well-performed to evaluate the client contributions.
The model-centric approach(e.g. FL aggregation algorithms) is the primary
approach to consider before the precise evaluation of client contribution.

TABLE 3. Detailed configurations of a federated model simulation for
each task. (lr : learning rate, B: batch size, L: local epochs, R:
communication rounds, S: simulations).

4) CLIENT CONTRIBUTION INDEX
The evaluation methods extract client contribution values
in different ranges, so we standardize these values into a
unified index known as the client contribution index(CCI).
CCI is newly measured by calculating the relative importance
between clients, ranging from zero to one. The negative val-
ues outside the boundary are initially set to zero,5 indicating
that the client does not contribute to the federated model.
By denoting vi as the value of the client contribution mea-
sured in a given evaluation method, we calculate the CCIs as
follows:

Client Contribution Index(CCI) =
ṽi∑
j ṽj

where ṽi =

{
0 if vi ≤ 0,
vi otherwise.

(6)

B. EXPERIMENT 1. ACCURACY VARIATION COMPARISON
Although the IIDness and noise proportion affect the client
contribution of each client, the impact of these data hetero-
geneity elements differs based on the companions with which

5Despite valuing zero to negative contributors, we leave the rank
of contribution between clients for the client removal experiment
in Section IV-C.
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FIGURE 6. Empirical results of the combinatorial effect of the noisy
client A in setting C.1.

FIGURE 7. Experiment 1. Accuracy samples used to measure the
contribution of Client A in setting C.1.

the client collaborates. As shown in Fig. 6, noisy client A
strongly supports the enhancement when collaborating with
client C. It increases the accuracy by 9.09% compared to
the combination with client B. Depending on which clients
participate, data corruption and different data distributions,
which are the main attacks of a centralized model, can signif-
icantly enhance the federated model.

Therefore, client contribution evaluations that only con-
sider full data usage (including RoundSV and FIA) pose
a critical challenge with extreme performance variations in
non-IID distribution and data-corrupted environments. The
actual Shapley Value and FIA are calculated as the marginal
accuracy of the combinations, including a client and exclud-
ing a client. These estimates can detect the combinatorial
influence of each client. Owing to the double-faced com-
binatorial impact, client A in Fig. 7 suffers from a wide
variation in accuracy samples between the combinations with
a standard deviation of 0.4883. However, the data size diversi-
fication of FedCCEA squeezes the range of accuracy samples
with a standard deviation of 0.0754. The contribution of client
A is measuredmore stably with FedCCEA than with the other
methods in Setting C.1.

FIGURE 8. Experiment 2. Client removal test for (a)MNIST in strong
non-IID settings(S.1, S.2), (b)EMNIST in strong non-IID settings(S.1, S.2),
and (c)CIFAR-10 in weak non-IID settings(W.1, W.2). Ideally, the straight
line should maintain high performance while the dashed line should drop
dramatically after removing clients. For simplicity, FedCCEA and RoundSV
are only shown, while the overall evaluation metrics are described
in Table 4.

C. EXPERIMENT 2. CLIENT REMOVAL TEST
In a federated setting, a direct precision test of client contri-
bution is challenging. There are no exact ground-truth values
of client contribution in federated environments that can be
precisely compared. In addition, the combinatorial impact
distracts themeasurement of ground-truth values owing to the
unclear linearity with data heterogeneity.
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TABLE 4. Evaluation metrics for experiment 2. (AbC: area between the Curves, AR : Accuracy Reversal) The higher AbC is the better evaluation, and the
AR mark (×) represents a good evaluation method. The last column(Best) means the number of settings that achieve the best result among evaluation
methods.

Alternatively, the client removal test [8], [24], [34] is
commonly used for the precision testing of client contribu-
tion measurements. As shown in Fig. 8, we incrementally
remove clients in descending and ascending order of CCIs
and retrain the model. By correctly selecting clients to be
removed, the model with removed low CCIs(straight line)
consistently retain high test accuracy. In contrast, the per-
formance of eliminating the highest contributors(dashed line)
decreases substantially. The two possible evaluation metrics
are as follows:

• Accuracy Reversal(AR): Regarding any proportion of
client removal, the accuracy of high-CCI removal should
not exceed the accuracy of low-CCI removal within the
same proportion. Moreover, AR should not exist for any
type of dataset or setting.

• Area between the Curves(AbC): If the client contri-
bution is properly measured, the difference between the
accuracy of the removed low-contributors(acclow,frac)
and that of the removed high-contributors(acchigh,frac)
would be estimated to be high. Therefore, we measure
AbC using the following equation:

AbC =
∑
frac

acclow,frac − acchigh,frac (7)

Fig. 8 shows that FedCCEA makes a more precise evalu-
ation of client contribution than RoundSV. While RoundSV
experiences accuracy reversals in the MNIST and CIFAR-10
settings, FedCCEA produces the expected results of the
correct client contribution measurement with no accuracy
reversal.

Specifically, even though RoundSV achieves a clear
gap between the ‘Least’ and the ‘Most’ in EMNIST set-
ting(Fig. 8(b)), FedCCEA achieves a much wider gap
than RoundSV that results in higher AbC than RoundSV.
In addition, evaluating the client contributions for CIFAR-
10 dataset(Fig. 8(c)) is challenging; however, FedCCEA
achieves consistent results with a positive AbC and no AR,
whereas RoundSV clearly experiences an accuracy reversal
in both settings W.1 and W.2.

Table 4 presents the outstanding results of the proposed
method. FedCCEA is the only method in which accuracy
reversal does not exist in the data distribution settings
that we construct, whereas the accuracy of the removed
high-contributors exceeds the accuracy of the removed
low-contributors in some cases for the other evaluation meth-
ods. Furthermore, FedCCEA obtain the highest AbCs in nine
out of 13 data settings, whereas FIA and RRAFL obtain the
highest AbCs in three and one setting, respectively. Overall,
FedCCEA shows robust measurements in most of the hetero-
geneous data environments, whereas the other baseline meth-
ods fail to achieve robustness to specific data heterogeneity.

D. EXPERIMENT 3. CLIENT REMOVAL TEST FOR PARTIAL
PARTICIPATION
Another advantage of FedCCEA is that it can measure client
contributions even if clients partially participate in FL using
only a part of the local dataset. By verifying the same exper-
iment as in Section IV-C, we demonstrate the precision of
client contribution, even with the allowance of partial par-
ticipation, and demonstrate its practicality. We (1) randomly
assign the data size of each client in every round, (2) rank
the CCIs in both descending and ascending orders, and
(3) retrain the federated model by removing a given propor-
tion of the highest and lowest contributors in every round.
Finally, (4) we compare the results to the case of FedCCEA
using the full data.6

As shown in Fig. 9, all datasets exhibit outstanding results
in the partial use case. It does not lead to accuracy rever-
sal(AR), and provides a similar or superior result for the area
between the curves(AbC) compared to the case of full use.
In addition to the settings in Fig. 9, we can also confirm that
all other data distribution settings reach a similar superiority
to the partial use cases. Thus, without reevaluating client
contributions, FedCCEA can obtain precise results for partial
participation. This widens the options for clients of data size
selection in distributed systems.

6Partial participation of clients cannot be applied to the baseline methods
because extra evaluations are required for every action. Therefore, we only
consider FedCCEA results.
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FIGURE 9. Experiment 3. Client removal test for partial participation in (a)S.2 setting of MNIST, (b)S.2 setting of
EMNIST, and (c)W.2 setting of CIFAR-10. Ideally, the straight line should maintain high performance while the dashed
line should drop dramatically after removing clients.

FIGURE 10. Training loss and test accuracy performance for 4-client exclusion strategies in (a) S.1 setting and (b) S.2 setting. The difference of
convergence speed seems to be trivial between FedCCEA-based client selection and contribution-based selection strategies. However, FedCCEA
constantly reaches a convergence point faster than uniformly random selection in both settings.

E. FURTHER EXPERIMENTS
1) CONVERGENCE ANALYSIS FOR CLIENT SELECTION
From a client selection perspective, choosing influential
clients and removing unnecessary ones are crucial challenges
in federated learning with high data heterogeneity. [44], [45]
Partial client participation in a highly heterogeneous data
environment can result in slow convergence if inappropriate
clients are selected for federated learning. On the other hand,
efficient selection of influential clients can result in faster
convergence and higher performance. Many studies have
introduced client selection strategies for partial client partic-
ipation using local losses [44], clustering through gradient
diversity [46], and linear speedup [47].

With the same aggregation algorithm(FedAvg),
contribution-based client selection strategies have a similar
convergence rate to each other. However, when we measure
the low- and high-contributors correctly, client selection or
exclusion strategies with contributions can achieve a reward
of fast convergence speed in a highly heterogeneous environ-
ment compared to uniformly random selection. As shown in
Fig. 10, we exclude four low-contributors measured by each

evaluation method and investigated the convergence point of
both training loss and test accuracy. The MNIST S.1 and
S.2 settings, which are strong non-IID environments with and
without label noise, are used in this experiment.

As a result, we discover that the contribution-based client
selection strategies have a trivial difference in convergence
speed. However, we can claim that the FedCCEA-based
client selection consistently achieves faster convergence than
random selection in both heterogeneous settings. Further-
more, the gap in the convergence speed between FedCCEA
and random selection becomes more substantial in S.2. set-
ting(Fig. 10(b)) when FedCCEA correctly captured four poi-
soning attackers and excluded them from federated learning
participation.

2) CLIENT REMOVAL TEST WITH DIFFERENT NUMBER OF
CLIENTS
In addition, we implement client removal tests for FedC-
CEA with a different number of clients. In this experiment,
we incrementally remove four clients for the 10-client FL
and eight for the 20- and 50-client FL. Subsequently, we
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TABLE 5. Client removal test with different numbers of clients.
(AbC: Area between the Curves, AR : Accuracy Reversal) As a
standard of a robust evaluation method, AbC should remain
positive, and AR should be marked as (×).

TABLE 6. Experiment for complexity analysis with different number of
clients(in seconds) (S: number of simulations, N : number of clients)
Empirically, we design a federated setting with 20 samples for each
client, 10 rounds, and only implement a single simulation(S = 1).

compare the consequence of the average AbC and the pres-
ence of AR.

Clearly, as the number of clients participating in federated
learning increases, the contribution of each client becomes
more difficult to evaluate. The increased number of client
combinations causes more extreme accuracy variations and
makes the evaluation unstable. However, as shown in Table 5,
FedCCEA provides robust results for evaluation metrics with
positive averaged AbC and no AR for any number of clients.

3) COMPLEXITY ANALYSIS
FedCCEA needs to repeat numerous simulations(S) of fed-
erated learning to obtain sufficient samples for an accu-
racy approximation in the evaluator phase. Thus, FedCCEA
requires O(S) complexity for contribution evaluation. In con-
trast, the evaluation complexity of other baseline methods is
highly dependent on the number of clients participating in
FL. RoundSV costs O(N logN ) [8], FIA costs O(N 2) [24],
and RRAFL costs O(N ).
The empirical experiment for the complexity analysis in

Table 6 shows that RoundSV, FIA, and RRAFL incur a
massive cost of contribution evaluation when the number
of clients increases. In contrast, the time cost of FedCCEA
remains nearly constant. Therefore, when the number of

clients in each round is large, the evaluation of FedCCEA is
remarkably faster than that of the other baselines. However,
when the number of clients is small, FedCCEA, with numer-
ous FL simulations(S), evaluates the client contribution much
slower than the other baseline methods.

V. CONCLUSION
In addition to a model-centric approach that focuses on
FL optimization, client contribution evaluation is another
effective approach for improving the FL performance. In this
study, we proposed FedCCEA, an empirical measurement
of client contributions, without accessing local datasets.
We built an accuracy approximation model to distinctively
exploit the data size for accuracy approximation and to
extract stable client contributions by considering a given data
size. Contrary to other evaluation methods, the data size
diversification of FedCCEA loosens the accuracy variation
of FL simulations and strengthens the robustness to diverse
data settings and practicality for partial participation.

REFERENCES
[1] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and

D. Bacon, ‘‘Federated learning: Strategies for improving communication
efficiency,’’ 2016, arXiv:1610.05492.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
‘‘Communication-efficient learning of deep networks from
decentralized data,’’ in Artificial Intelligence and Statistics. 2017,
pp. 1273–1282.

[3] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, ‘‘Federated learning:
Challenges, methods, and future directions,’’ IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[4] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis,
A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, and
R. G. D’Oliveira, ‘‘Advances and open problems in federated learning,’’
2019, arXiv:1912.04977.

[5] M. Toneva, A. Sordoni, R. T. des Combes, A. Trischler, Y. Bengio, and
G. J. Gordon, ‘‘An empirical study of example forgetting during deep
neural network learning,’’ in Proc. Int. Conf. Learn. Represent., 2018,
pp. 1–19.

[6] H. Ferdowsi, S. Jagannathan, and M. Zawodniok, ‘‘An online outlier iden-
tification and removal scheme for improving fault detection performance,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 5, pp. 908–919,
May 2013.

[7] T. Nishio and R. Yonetani, ‘‘Client selection for federated learning with
heterogeneous resources in mobile edge,’’ in Proc. IEEE Int. Conf. Com-
mun. (ICC), May 2019, pp. 1–7.

[8] T. Wang, J. Rausch, C. Zhang, R. Jia, and D. Song, ‘‘A principled approach
to data valuation for federated learning,’’ in Federated Learning. Springer,
2020, pp. 153–167.

[9] S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen, ‘‘Learning to detect
malicious clients for robust federated learning,’’ 2020, arXiv:2002.00211.

[10] W. Zhang, T. Zhou, Q. Lu, X. Wang, C. Zhu, H. Sun, Z. Wang, S.
K. Lo, and F.-Y. Wang, ‘‘Dynamic-fusion-based federated learning for
COVID-19 detection,’’ IEEE Internet Things J., vol. 8, no. 21,
pp. 15884–15891, Nov. 2021.

[11] K. L. Ng, Z. Chen, Z. Liu, H. Yu, Y. Liu, and Q. Yang, ‘‘A multi-player
game for studying federated learning incentive schemes,’’ in Proc. 29th
Int. Joint Conf. Artif. Intell., Jul. 2020, pp. 5179–5281.

[12] Y. Zhan, P. Li, Z. Qu, D. Zeng, and S. Guo, ‘‘A learning-based incentive
mechanism for federated learning,’’ IEEE Internet Things J., vol. 7, no. 7,
pp. 6360–6368, Jul. 2020.

[13] L. Lyu, X. Xu, Q. Wang, and H. Yu, ‘‘Collaborative fairness in federated
learning,’’ in Federated Learning. Springer, 2020, pp. 189–204.

[14] G. Wang, C. X. Dang, and Z. Zhou, ‘‘Measure contribution of participants
in federated learning,’’ in Proc. IEEE Int. Conf. Big Data (Big Data),
Dec. 2019, pp. 2597–2604.

VOLUME 10, 2022 118573



S. K. Shyn et al.: Empirical Measurement of Client Contribution for FL With Data Size Diversification

[15] W. Zhang, Q. Lu, Q. Yu, Z. Li, Y. Liu, S. K. Lo, S. Chen, X. Xu, and
L. Zhu, ‘‘Blockchain-based federated learning for device failure detection
in industrial IoT,’’ IEEE Internet Things J., vol. 8, no. 7, pp. 5926–5937,
Apr. 2020.

[16] H. Touvron, A. Vedaldi, M. Douze, and H. Jegou, ‘‘Fixing the train-test
resolution discrepancy,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32,
2019, pp. 8252–8262.

[17] J. Ngiam, D. Peng, V. Vasudevan, S. Kornblith, Q. V. Le, and
R. Pang, ‘‘Domain adaptive transfer learning with specialist models,’’
2018, arXiv:1811.07056.

[18] B. Frenay and M. Verleysen, ‘‘Classification in the presence of label
noise: A survey,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 5,
pp. 845–869, May 2013.

[19] P. Vepakomma, T. Swedish, R. Raskar, O. Gupta, and A. Dubey, ‘‘No peek:
A survey of private distributed deep learning,’’ 2018, arXiv:1812.03288.

[20] A. Ghorbani and J. Zou, ‘‘Data Shapley: Equitable valuation of data for
machine learning,’’ in Proc. Int. Conf. Mach. Learn., 2019, pp. 2242–2251.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[22] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, ‘‘EMNIST: Extending
MNIST to handwritten letters,’’ in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), May 2017, pp. 2921–2926.

[23] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Tech. Rep., 2009.

[24] Y. Xue, C. Niu, Z. Zheng, S. Tang, C. Lyu, F. Wu, and G. Chen, ‘‘Toward
understanding the influence of individual clients in federated learning,’’ in
Proc. AAAI Conf. Artif. Intell., vol. 35, no. 12, 2021, pp. 10560–10567.

[25] T. Song, Y. Tong, and S. Wei, ‘‘Profit allocation for federated learning,’’ in
Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2019, pp. 2577–2586.

[26] S.Maleki, L. Tran-Thanh, G. Hines, T. Rahwan, andA. Rogers, ‘‘Bounding
the estimation error of sampling-based Shapley value approximation,’’
2013, arXiv:1306.4265.

[27] J. Zhang, Y. Wu, and R. Pan, ‘‘Incentive mechanism for horizontal feder-
ated learning based on reputation and reverse auction,’’ in Proc. Web Conf.,
2021, pp. 947–956.

[28] J. Zhao, X. Zhu, J. Wang, and J. Xiao, ‘‘Efficient client contribution
evaluation for horizontal federated learning,’’ in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2021, pp. 3060–3064.

[29] H. Wang, Z. Kaplan, D. Niu, and B. Li, ‘‘Optimizing federated learning on
non-IID data with reinforcement learning,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Jul. 2020, pp. 1698–1707.

[30] P. W. Koh and P. Liang, ‘‘Understanding black-box predictions via influ-
ence functions,’’ in Proc. Int. Conf. Mach. Learn., 2017, pp. 1885–1894.

[31] R. D. Cook, ‘‘Detection of influential observation in linear regression,’’
Technometrics, vol. 19, no. 1, pp. 15–18, Feb. 1977.

[32] A. Richardson, A. Filos-Ratsikas, and B. Faltings, ‘‘Rewarding high-
quality data via influence functions,’’ 2019, arXiv:1908.11598.

[33] L. S. Shapley, ‘‘A value for n-person games,’’ in Classics Game in Theory,
vol. 69. 1997.

[34] J. Yoon, S. Arik, and T. Pfister, ‘‘Data valuation using reinforcement
learning,’’ in Proc. Int. Conf. Mach. Learn., 2020, pp. 10842–10851.

[35] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
‘‘Federated learning with matched averaging,’’ in Proc. Int. Conf. Learn.
Represent. (ICLR), 2020, pp. 1–16.

[36] T. Li, A. K. Sahu,M. Zaheer,M. Sanjabi, A. Talwalkar, andV. Smith, ‘‘Fed-
erated optimization in heterogeneous networks,’’ in Proc. Mach. Learn.
Syst., 2020, pp. 1–22.

[37] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. Vincent Poor, ‘‘Tackling the
objective inconsistency problem in heterogeneous federated optimization,’’
2020, arXiv:2007.07481.

[38] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh,
‘‘SCAFFOLD: Stochastic controlled averaging for federated learning,’’ in
Proc. 37th Int. Conf. Mach. Learn., 2020, pp. 1–12.

[39] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M. Gürel, B. Li,
C. Zhang, D. Song, and C. J. Spanos, ‘‘Towards efficient data valuation
based on the Shapley value,’’ in Proc. 22nd Int. Conf. Artif. Intell. Statist.,
2019, pp. 1167–1176.

[40] V. F. Barabanov, O. J. Kravets, I. N. Kryuchkova, O. Y. Makarov,
A. K. Pogodayev, and O. N. Choporov, ‘‘Discrete processes dynamics
neural network simulation based on multivariate time series analysis with
significant factors delayed influence consideration,’’ World Appl. Sci. J.,
vol. 23, no. 9, pp. 1239–1244, 2013.

[41] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[42] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, ‘‘On the convergence
of FEDAVG on non-IID data,’’ in Proc. Int. Conf. Learn. Represent., 2019,
pp. 1–26.

[43] A. Fallah, A. Mokhtari, and A. Ozdaglar, ‘‘Personalized federated learning
with theoretical guarantees: Amodel-agnostic meta-learning approach,’’ in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 3557–3568.

[44] Y. J. Cho, J. Wang, and G. Joshi, ‘‘Client selection in federated learning:
Convergence analysis and power-of-choice selection strategies,’’ 2020,
arXiv:2010.01243.

[45] Y. Ruan, X. Zhang, S.-C. Liang, and C. Joe-Wong, ‘‘Towards flexible
device participation in federated learning,’’ in Proc. Int. Conf. Artif. Intell.
Statist., 2021, pp. 3403–3411.

[46] R. Balakrishnan, T. Li, T. Zhou, N. Himayat, V. Smith, and J. Bilmes,
‘‘Diverse client selection for federated learning via submodular maximiza-
tion,’’ in Proc. Int. Conf. Learn. Represent., 2021, pp. 1–18.

[47] H. Yang, M. Fang, and J. Liu, ‘‘Achieving linear speedup with
partial worker participation in non-IID federated learning,’’ 2021,
arXiv:2101.11203.

SUNG KUK SHYN received the B.S. degree
in economics and science in engineering from
Sungkyunkwan University, in 2021, where he
is currently pursuing the M.S. degree with the
Department of Artificial Intelligence. His research
interests include federated learning, time series
forecasting, AI applications, and explainable AI.

DONGHEE KIM received the M.S. degree
in electric and computer engineering from
Sungkyunkwan University, in 2017, where he
is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineer-
ing. He served as the AI Assistant Research Engi-
neer at Ntels Company Ltd. He is also working
at Hippo T&C Inc., as an AI Research Engineer.
His research interests include federated learning,
AI applications, and self-supervised learning.

KWANGSU KIM (Member, IEEE) received the
Ph.D. degree in computer science from the Uni-
versity of Southern California, in 2007. He worked
as the Director-General of the Ministry of Science
and ICT, South Korea. He is currently a Professor
with the College of Computing and Informatics,
Sungkyunkwan University. He is also the Direc-
tor of the Sungkyun AI Research Institute. His
research interests include computer vision, domain
adaptation, federated learning, AI applications,
and explainable AI.

118574 VOLUME 10, 2022


