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Abstract

This paper presents a generalized and robust face manip-
ulation detection method based on the edge region features
appearing in images. Most contemporary face synthesis
processes include color awkwardness reduction but damage
the natural fingerprint in the edge region. In addition, these
color correction processes do not proceed in the non-face
background region. We also observe that the synthesis pro-
cess does not consider the natural properties of the image
appearing in the time domain. Considering these observa-
tions, we propose a facial forensic framework that utilizes
pixel-level color features appearing in the edge region of
the whole image. Furthermore, our framework includes a
3D-CNN classification model that interprets the extracted
color features spatially and temporally. Unlike other exist-
ing studies, we conduct authenticity determination by con-
sidering all features extracted from multiple frames within
one video. Through extensive experiments, including real-
world scenarios to evaluate generalized detection ability,
we show that our framework outperforms state-of-the-art
facial manipulation detection technologies in terms of ac-
curacy and robustness.

1. Introduction
As various AI-based generative models are developed

[22, 39, 13], facial manipulated videos, so-called DeepFake,
are becoming a major social issue. These forged videos are
becoming so sophisticated that it is difficult to determine the
authenticity with the human eye. Moreover, the advent of
these realistically synthesized videos allows malicious ac-
tions to threaten the creditability of public media and indi-
vidual privacy [46], e.g., politicians’ fake news, celebrity
pornography. Therefore, effective detection of facial ma-
nipulation is a significant issue in the computer vision field.

Most contemporary face synthesis algorithms generate
a face shape (expression, mouth shape, etc.) learned by
source images and pasting the shape into the face area of tar-
get images [47]. Early DeepFake videos in public datasets
such as UADFV [26] and DeepfakeTIMIT [23] commonly

Figure 1. Summarized steps of general face manipulation proce-
dure. An artificial image is created through a generative model
with a source face image. Then, post processing is involved after
image creation for a more realistic synthesis.

synthesized faces in target images without pixel-level cor-
rection, resulting in color awkwardness in the face edge re-
gion. In response, more advanced manipulation methods
add post-processing procedures such as Gaussian blurring
or Bi-linear interpolation to express the face-synthesized
image more naturally [28, 35], as shown in Figure 1.

We observe that several modern face synthesis methods
have the following common features: 1) Post-processing is
done only on the facial part. Since the color correction is not
performed on unrelated background parts, the inherent fea-
tures of the background part are not damaged. 2) The face
synthesis process does not involve the time concept. The in-
trinsic features vary in each frame, even with a slight change
of pixels. However, the artificially synthesized videos do
not highly consider the sequential changes.

Based on these observations, we propose a generalized
detection model of synthesized images. We mainly focus
on a robust facial image forensic method through color dis-
tribution changes in the face-synthesizing process. Our pro-
posed method pays attention to pixel-level features from the
edge region in the entire, not only on the features appearing
in the face, like other existing studies [1, 18, 36].

Also, a classification model including the temporal con-
cept is introduced to improve detection performance. The
latest studies [37, 50] have already demonstrated that the

2828



framework that includes the time-domain properties has a
much better forgery detection performance. Existing stud-
ies use known networks such as SlowFast [12] and Xception
[4] as backbone. However, these models are not suitable for
handling very small-sized chronospatial inputs. Therefore,
a 3D classification model based on DenseNet [17] is intro-
duced for dealing with the extracted small-size edge region
features spatiotemporally.

This paper has great potential to contribute to the field of
face manipulation detection. More specifically, our frame-
work is unique in that it reflects the edge attributes appear-
ing throughout the whole image and interprets these fea-
tures spatiotemporally. Several cross-experimental results
show that our method outperforms other existing detection
frameworks in accuracy and generalization ability.

2. Previous Work
In response to the rising threats of AI-generated facial

forgeries, many researches [10, 30, 38, 8, 14, 26] have been
held to detect forged images. Existing studies devise their
methods based on the abnormality revealed in the synthe-
sized facial area. For example, Matern et al. [33] present a
detection method based on visual artifacts in eyes and noses.
Yang et al. [49] suggest a DeepFake detection methodology
focusing on the inconsistency of head poses. While these
works pay attention to the awkwardness features of syn-
thesized faces, many recent works [1, 42, 54, 53] presents
detection methods with state-of-the-art artificial neural net-
works such as the recurrent neural network [14] and capsule
network [36]. All of these studies commonly focus on the
forged image itself rather than the synthesis process. This
approach inevitably exposes limitations in practical situa-
tions where it is necessary to determine the authenticity of
video data made from various sources.

The facial manipulation detection should remain robust
even with unseen forged data to apply the detection frame-
work in real-world situations. The latest studies [5, 10, 48,
6, 19] focus on the innate artifacts that appear in the face im-
age synthesis process for a more practical detection frame-
work. For instance, Face X-ray [25] focuses on common
blending procedures and shows their generalization abil-
ity with unseen datasets. SPSL [29] analyzes forged im-
ages as a phase spectrum that emphasizes the abnormal fea-
tures from the up-sampling procedure in generative mod-
els. These novel studies also show good performance in
cross-dataset experiments, but they also have a problem of
observing only the features of the face part. This limi-
tation critically loses generality when cross-validating the
source data with completely disparate datasets (e.g. Face-
Forensics++ [40] for train, Celeb-DF [28] for test). Our
study further derives a better performance with more gen-
erality by comparing the extracted features between facial
edges and background edges.

Figure 2. A brief illustration of edge window. Each point is spaced
equally above the line segments. A center point in the window
implies mid-point Mi,i+1 of 2 neighboring landmark points, Li

and Li+1.

3. Edge Region Feature
Early research in image forensics [11] mentions that un-

forged natural images have unique fingerprints and artifacts.
These traces are affected by external factors such as the sur-
face of a camera lens, the direction of the light entering the
camera, and the image processing procedure. Moreover, re-
cent studies [24, 34, 51, 31] show that AI-based generative
models do not address color component distortion or un-
natural (artificial) imprints, resulting in imperfect reproduc-
tion of original imprints. Thus, the face-replacing and the
color-correction process damage the raw image fingerprints
across the facial boundary. We pay attention to this point
by extracting the color difference features in both the facial
part and the background area at the edge region.

3.1. Facial Edge Region Feature

With the frame image I extracted from the video, the
face area from I is detected with the frontal face detector
in dilb [20]. Then the 68 feature points are extracted from
the detected face with 68 face landmark shape predictors
in dlib. Among them, we define the first 17 feature points
representing the facial contours as facial boundary points,
FBPs. We would like to create a line segment perpendicular
to the facial boundary line to obtain color features along the
face edge region. The x-coordinate and y-coordinate corre-
sponding to the line segment element Pi,i+1 are generated
with the coordinates of two neighboring landmark points Li

and Li+1 in FBPs. The creation method follows parametric
equations (1) and (2).

Px(t)i,i+1 =
(Li,y − Li+1,y)

√
SI

Di,i+1
t+Mi,i+1,x (1)

Py(t)i,i+1 =
−(Li,x − Li+1,x)

√
SI

Di,i+1
t+Mi,i+1,y (2)

Here, t is a 20 integer parameter with a range of -10 to
9, from the inside to the outside of the face. Di,i+1 and
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Figure 3. Facial boundary window generation pipeline. (a) Capture image I from video. (b) Get a facial boundary line with face landmark
points detected from (a). (c) Make perpendicular line segment Pi,i+1 with neighboring landmark points. (d) Create a set of horizontal lines
Vi,i+1 perpendicular to line segment Pi,i+1 at equal intervals.

Mi,i+1 indicates distance and midpoint between two land-
mark points Li and Li+1 each. Midpoint Mi,i+1 is located
on t = 0. Note that x, y in subscript are x-coordinate and
y-coordinate, respectively. SI is a scale-factor for adjusting
the length of the perpendicular line segment according to
the size of the face in the image I . SI is obtained through
the following equation (3).

SI =
α

AI
(3)

AI is the convex area value covering the face contour cre-
ated from the FBPs, which are obtained from image I . α is
a tunable hyper-parameter that is related to the interval be-
tween line segment coordinates. By tuning with the scale-
factor, the perpendicular line segment Pi,i+1 passes through
a specific range of the facial boundary, regardless of face
size in the image.

With gathered line segments, we create window-shaped
features to reflect the boundary region features spatially. A
set of horizontal line segments Vi,i+1, which are parallel
to the facial boundary line, are considered. This horizon-
tal line goes through the t point of obtained line segment
Pi,i+1. The concrete coordinates of horizontal line seg-
ments Vi,i+1 are generated by following parametric equa-
tions (4) and (5).

Vx(u, t)i,i+1 =
(Li+1,x − Li,x)

√
2SI

β
u+ Px(t)i,i+1 (4)

Vy(u, t)i,i+1 =
(Li+1,y − Li,y)

√
2SI

β
u+ Py(t)i,i+1 (5)

Horizontal line segments are also represented by a para-
metric equation. Note that parameter u which has 20 in-
teger parameters with range -10 to 9. β is a tunable hyper-
paramter related to interval between horizontal line segment

Figure 4. Background edge image generation procedure.

coordinates. The window-shaped 20×20 corresponding co-
ordinates are specified by a set of 20 horizontal lines. Figure
2 illustrates an example of an extracted edge window. We
will refer to these 400 coordinate features as edge window
Wi, a set of horizontal lines Vi,i+1 with two parameters t
and u. A total of 16 windows are created per single image
I with facial boundary points (i.e., i ∈ N | 1 ≤ i ≤ 16).
A summarized pipeline of window generation from a facial
image is shown in Figure 3.

After creating the edge window Wi, we compute the ab-
solute difference of the RGB pixel values according to the
parameter t to find out how the RGB pixel values in edge
window Wi change from the inside to the outside of the
face. These extracted 16 windows shaped 20×19×3 color
value differences are FI , which is the facial boundary fea-
tures of the image I . Note that 20 refers to the number
of u-direction coordinates in edge windows, 19 implies the
modified parameter t (t = 0 is center) on which differenti-
ated color value lie, and 3 indicates RGB.

3.2. Background Edge Region Feature

Before extracting background edge points’ features, we
make a background edge image EI from frame image I . We
firstly blur image I with 5×5 Gaussian filter to removing
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Figure 5. Background boundary feature extraction pipeline. (a) Capture image I from video. (b) Make a background edge image without
facial boundary EI . (c) Sample 10% points from total edges in the edge image EI . (d) Make vertical lines and horizontal lines in the same
way as the facial line segments were extracted.

noise of background and extract distinctive boundary parts.
Then, the rough edge image E

′

I including edge points on
the face is generated with the Canny edge detector [3].

The facial edge points in E
′

I must be excluded to extract
the natural fingerprint of the background edges. We consid-
ered convex image CI that covers face contour made with
the FBPs. CI is a binary image with the same size as the
original image I with inner points of convex are 0, and the
outer points of convex are 1. A big-face convex image C

′

I

is created by blurring CI with 15×15 Gaussian Filter and
rounding down each value in blurred CI to 0, except the
pixels with the values of 1. We can get an edge image EI

that excludes facial edge points by multiplying C
′

I and E
′

I

element-wise. A brief pipeline of making background edge
image EI is shown in Figure 4.

With edge image EI , 10% of the total edge points in EI

are randomly sampled to get statistical information that ap-
pears along background edges. Then background windows
are extracted with sampled edge points in the same way as
facial boundary features are, with Li and Li+1 correspond-
ing to the two nearest points of a sampled point. The ex-
tracted features are N windows shaped 20×19×3 where N
is the number of sampled edge points in background edge
image EF while 20, 19, and 3 are equivalent to that men-
tioned in Section 3.1. A summarized procedure of the back-
ground edge windows generation is shown in Figure 5.

The direction of parameter t in the background edge
windows from the EI cannot be specified except that their
boundary lines are in a vertical direction of edge points. For
this reason, we fold the background edge feature and sym-
metrically unfold with the basis on t = 0 to remove the
directional information in the edge window (e.g., all fea-
ture values in t = −9 and t = 9 are averaged by the axis).
Finally, the values of the N windows are averaged to get
statistical information of the sampled N window features.
A BI , which is the final background boundary feature of
image I , is the averaged background edge region features
shaped 20×19×3.

4. Analysis with Extracted Features

We apply the proposed feature extraction method to face
forensic datasets. Several datasets are adopted: FaceForen-
sics++ (FF++) [40], Celeb-DF [28], and DFDC [9]. All
of these datasets contain genuine video data and face ma-
nipulated video data forged from genuine ones. We ran-
domly choose 750 genuine videos and 750 manipulated
videos for FaceForensics++, and DFDC each. Exception-
ally, the Celeb-DF dataset has less than 750 genuine video
data, so we choose 563 genuine video data and 750 manip-
ulated video data in the Celeb-DF dataset. Since the length
of videos included in datasets varies, 24 consecutive frames
at random timepoint are extracted.

The features extracted in Sections 3.1 and 3.2 are ad-
ditionally post-processed for statistical analysis. The FI ,
which has 16 edge windows, is replaced with the averaged
edge window. Then the edge region feature values of both
face and background are averaged along the u-axis. The
averaged FI and BI , which both are shaped 19×3, are the
statistical data of the extracted edge region features. Here,
19 indicates the t-axis, which is the vertical direction of the
boundary line, and 3 refers to RGB.

We plotted a graph to statistically analyze the change
in the color difference along the vertical line of the edge
regions. Figure 6 shows the dataset-wise distributions of
facial features and background features along parameter t-
direction. Note that boundary edge points are at t = 0. We
observe a distribution difference between the facial features
derived from the face manipulated image and those of the
real image. There is a significant difference in distribution
points close to t = 0, indicating the point along the facial
boundary line.

In all three datasets, only the color distribution of the fa-
cial edge region has a distinct difference between the real
and the fake. In addition, the difference between the color
distribution of the forged facial boundary area and those of
the background boundary area is similar regardless of the
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Figure 6. Color difference distribution of extracted features from 3 different datasets. (Celeb-DF, FaceForensics++ and DFDC)

dataset. This observation shows that reflecting the facial in-
formation and background information together could help
solve the generalization problem.

5. Classification Model
Recent studies [6, 25, 27] attempted to find a more gen-

eralized image forensic solution by localizing the face syn-
thesized parts. They used well-known neural networks as
the backbone network such as HRNet [43] or XceptionNet
[4] with combining their own methods. These existing 2D
CNN-based models have good classification performance
for single image input. However, these models are not suit-
able for determining the authenticity of a video because
these 2D models are limited to extract only spatial features
rather than temporal features.

Even for the same video, fingerprints appearing in a
frame vary slightly over time due to external factors such as
lighting brightness and camera shake. Contemporary face
synthesizing algorithms cannot blend faces by reflecting
these fingerprint’s subtle changes. Therefore, spatial and
temporal interpretation of the extracted edge region features
can lead to higher performance in determining the authen-
ticity of a video.

Lately, 3D-CNN models are designed by borrowing the
structure of an existing 2D-CNN model for action recog-
nition and medical image analysis [16, 2]. In particular, a
recent face manipulation detection study [37] uses a Slow-

Fast [12], which is for video feature extraction, as a back-
bone network. Studies applying these 3D-Models to video-
related tasks show remarkable performance in each field.
However, all 3D networks of previous studies have struc-
tures that receive relatively large input sizes, usually whole
frames. On the other hand, our extracted features have a
small size, around 20 pixels in height and width. Therefore,
it is not appropriate to utilize other existing networks as a
backbone for our framework.

Considering these observations, we designed a 3D-CNN
model for our framework to classify facial manipulated
video. A 3D-LightDenseNet by referring to the DenseNet
[17, 15] model is devised to obtain richer spatio-temporal
information from the processed features. This model takes
the edge region features extracted from several consecutive
frames within a video as input. The 3D-LightDenseNet has
a shallower structure than the existing DenseNet because
the size of the extracted edge region is smaller than the en-
tire image.

Overall, this model behaves in a similar way to the ex-
isting DenseNet. This model also consists of Dense Block
and Transition Block. We simply convert all 2D-Layers to
3D-Layer. The notable difference is that there is no pooling
layer in Dense Block. This is because the size of the initial
input is very small. The detailed network structure is shown
in Figure 7.
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Figure 7. Illustrated structure of our proposed classification network, 3D-LightDenseNet. 3D-LightDenseNet extracts further distinctive
spatio-temporal characteristics with frame-wise extracted edge region features and determines authenticity of input video.

6. Experiment
We perform extensive experiments using the DFD

dataset [7] and 3 face forensic datasets mentioned in Sec-
tion 4. In addition to cross-validation and comparison ex-
periments, in-depth experiments and ablation studies are de-
signed to test the proposed method’s robustness and practi-
cality.
Experiment Inputs. First, we split each dataset into 80%
for training data and 20% for test data. As with the frame
extraction method described in Section 4, 24 consecutive
frames at random timepoint are extracted per video. Then
edge region features are extracted frame-wisely with refer-
ring to Section 3. The hyper-parameters α and β in Sec-
tion 3 are empirically set to 25, 54, respectively. Extracted
features FI are shaped 20×19×24 with 16×3 channels, of
which 16 refers to the number of facial boundary windows,
and 3 indicates RGB. Additionally, we make a difference
features DI with FI and BI by referring to the Equ. (6).
Note that DI is a post-processed BI to reflect the color dis-
tribution differences between the background edge region
and the face edge region in the classification framework.

DI,i = FI,i −BI (6)

Here, the i indicates the enumerated edge window. The cal-
culated DI is an index indicating how much more focus is
placed on the face compared to the background in one im-
age data.

The computed difference features DI have the same
shape and the same number of channels as the FI . The final

Detection Performance (AUC)

Training Test
FF++ DFD DFDC CelebDF

FF++ 99.8 95.1 90.0 87.8
DFD 96.3 99.8 89.2 87.9

DFDC 98.7 93.2 98.1 88.5
CelebDF 99.8 99.6 97.3 95.4

Table 1. Cross-validation performance results.

input shape for 3D-LightDenseNet is 20×19×24 with 96
channels, which 96 indicates sum of the number of chan-
nels of the FI and those of the DI .
Model Details. The total epoch is set to 1000, and the batch
size is set to 20. The learning rate is set as 0.00075 using
the Adam [21] optimizer. Additionally, we scheduled the
optimizer to multiply 0.5 to the learning rate at every 200
epochs in case of a decaying learning rate. The growth rate
is set to 32, and the dense block layers are set to 6, 12, 8
each. The cross-entropy function is used for loss function.

6.1. Cross-Validation with Various Datasets

We firstly design a cross-validation experiment to test
our approach in the aspect of robustness to real-world sce-
narios. In this experiment, we train our model with one
dataset and test with another dataset to make scenarios that
detect manipulated images with unseen datasets. Table 1
shows the cross-validation performance result of our ap-
proach in terms of AUC(Area Under the receiver operating
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Detection Performance (AUC)

Method Training Test Method Training Test
FF++ DFD DFDC CelebDF FF++ DFD DFDC CelebDF

Comp.

FF++ 95.4 82.3 81.6 75.7

Resize

FF++ 96.5 85.7 83.3 79.9
DFD 83.1 95.3 82.0 79.7 DFD 89.8 96.9 85.4 81.6

DFDC 80.0 85.5 93.1 80.6 DFDC 82.7 86.2 97.0 82.5
CelebDF 84.4 83.3 82.8 86.3 CelebDF 89.4 91.1 90.2 88.9

Table 2. Performance results with pixel-level manipulated video. Comp. indicates image compression, and Resize refers to image down-
sizing. The results with raw video datasets are in Table 1.

Detection Performance (AUC)
Study FF++ CelebDF

FWA [27] 93.0 64.6
Face X-ray [25] 98.5 74.8
Evolution [45] 99.5 83.6

Two-Branch [32] 93.2 73.4
F 3 Net [37] 98.0 -

VST [48] 99.6 96.2
SPSL[29] 96.9 -

BitaNet[41] 99.8 98.8
Ours 99.8 95.4

Table 3. Single dataset experiment result compared with contem-
porary works.

characteristic Curve).
We figure that cross-validating models trained with

Celeb-DF features can obtain more generalized results than
models trained with other datasets. This inconsistency may
occur because the features extracted from the Celeb-DF
dataset have relatively less distinctive differences between
unforged images and manipulated images when compared
to the other three datasets. We can see that a model trained
with a dataset with relatively less prominent features per-
forms well when verifying a dataset with more prominent
features. Nevertheless, any experiment result with DFDC
and Celeb-DF outperforms other referred face manipulation
detection methods to be described later.

6.2. Comparison with Latest Works

Detection Accuracy. As with the experimental method
mainly conducted in other previous studies, we experiment
with one specific dataset for both training and testing. The
performance results of several existing methods [27, 25, 45,
32, 37, 48, 29, 41] are compared with those of our pro-
posed method. Experiments are conducted with the FF++
and Celeb-DF datasets, which have been mainly covered in
other studies. The summarized performance comparison is
in Table 3.

The detection results for the Celeb-DF dataset are
slightly inferior compared to the latest studies [41, 48],
while results of the FaceForensics++ dataset are superior

Detection Performance (AUC)

Study Test
FF++ DFDC CelebDF

3DCNN [52] 72.22 55.02 57.32
FWA [27] 93.00 - 64.60

Face X-ray [25] 98.52 80.92 80.58
F 3 Net [37] 97.97 - 65.17

VST [48] 99.60 72.45 63.47
SPSL[29] 96.91 66.16 76.88

Ours 99.80 90.03 87.81

Table 4. Generalization performance results compared with recent
studies. All comparison frameworks are trained using only the
FaceForensics++ dataset.

to other studies. The comparison results of other latest de-
tection frameworks show that the general detection perfor-
mance itself is also excellent.
Generalization Ability. We compared our performance re-
sults with the latest works [52, 27, 25, 29, 37, 48] that deal
with generalized forgery detection ability for a more precise
evaluation of universality. Similar to the cross-validation
experiments conducted in other studies, our framework is
trained with only the FaceForensics++ dataset to perform
comparison experiments. The Celeb-DF dataset and DFDC
dataset are used for cross-validation tests. The forged
videos in these datasets are made with totally different
source data from the those of FaceForensics++ dataset. Ta-
ble 4 summarizes the AUC results compared with these ex-
isting contemporary works and ours.

We observe that our framework outperforms the other
several approaches in terms of the AUC results. Compared
to FF++ results verified with the same dataset, the perfor-
mance results of cross-validation with DFDC and Celeb-DF
are much better than the latest generalization studies.

6.3. Forgery Detection Against Pixel Manipulation

Image Compression. We evaluate whether the proposed
detection framework has robust detection capabilities in
terms of image compression. The experiment is performed
by compressing the image quality of videos in existing
datasets. Image compression is performed on all datasets
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Detection Performance (AUC)

Method Training Test Method Training Test
FF++ DFD DFDC CelebDF FF++ DFD DFDC CelebDF

w/o BG

FF++ 98.5 91.2 84.8 79.3

2D

FF++ 95.7 92.8 86.0 82.1
DFD 88.2 98.6 84.1 81.8 DFD 89.5 96.2 85.4 83.3

DFDC 91.1 86.7 97.3 83.0 DFDC 91.7 88.5 94.6 82.8
CelebDF 94.2 91.9 87.4 93.1 CelebDF 95.0 94.5 91.2 89.9

Table 5. Performance results of ablation studies. w/o BG refers to without background features, and 2D indicates 2D-variation model of
3D-LightDenseNet. The vanilla results are in Table 1.

used for training and testing. A low-quality(LQ) compres-
sion method referred to by [40] is applied to experimental
datasets. The test results are in the left part of Table 2.

Compared with Table 1, we see that the experimental re-
sults that verifying with the same dataset don’t get much
worse. But, the detection performance that verifying with
other datasets are poorer than the original results. Hence,
feature extraction at the pixel level is especially affected by
image quality in cross-validation experiments.
Image Downsizing. We additionally test whether the
framework shows robust performance even for small-
resolution videos. The video used in the experiment is 1/16
(1/4 width, 1/4 height) of the video resolution of the exist-
ing dataset. A simple bilinear resizing method is used. The
experimental results are shown in the right part of Table 2.

The performance deterioration is unavoidable with re-
duced pixel information like the image compression exper-
iment. However, it shows similar detection performance
compared with existing studies referred at Section 6.2, even
with downsized videos tests. Comparing these experimen-
tal results with the performance of other existing studies,
it appears that our method is relatively more robust to data
laundering like the resolution reduction.

6.4. Ablation Studies

Effect of Background Features. We conduct an ablation
study to see how much the background edge features affect
the detection performance. The experiment evaluates the
detection performance by using only the 48 input channels
representing the facial edge region features. We change the
input channel of the detection model from 96 to 48. Ad-
ditionally, the numbers of output channels of the convolu-
tion layers in the classification model are also proportion-
ally halved. The detection model is then fine-tuned. The
test results are presented in the left part of Table 5.

The ablation experiment result of the background edge
information is worse than the original test result. Especially
in cross-validation experiments, AUC results deteriorated
by 5-8%. The experimental results demonstrate that reflect-
ing the features of the background boundary together in the
detection framework leads to better generalization perfor-
mance.

Effect of Time-domain information. Most of the contem-
porary existing face manipulation [36, 27, 44, 29] detec-
tion studies do not determine the authenticity of the whole
video but in units of frames that exclude the concept of time.
We utilize 2D-LightDenseNet to evaluate detection perfor-
mance with only frames, excluding the concept of time. A
2D-LightDenseNet is a transformed model that replaces all
3D layers of 3D-LightDenseNet with 2D layers. The model
takes an input with the dimension of the number of frames
removed. The evaluation method for determining the au-
thenticity of an image proceeds with reference to [40]. The
experimental results are in the right part of Table 5.

The performances of the time-domain ablation study are
inferior to the experimental results through the original 3D
model. It shows a performance drop of about 4-7% in all
cross-validation AUCs. As a test result shown above, it is
important to include the time-domain features when detect-
ing facial tampered videos.

7. Conclusion
We tackle the generalized facial forgery detection prob-

lem by leveraging the pixel-level difference in the bound-
ary area made by the post-processing procedure of synthe-
sis algorithms. Our work shows the importance of utiliz-
ing both face edge information and background edge in-
formation for generalized detection abilities. Furthermore,
we demonstrate that spatiotemporal interpretation of these
edge region features is more advantageous for image au-
thenticity determination. Outstanding performance results
from extensive cross-dataset experiments demonstrate that
our approach not only performs well with a specific dataset
but can also be fully applied in real-world situations.
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fakes: a new threat to face recognition? assessment
and detection”. In: arXiv preprint arXiv:1812.08685
(2018).

2836



[24] Haodong Li et al. “Identification of deep network
generated images using disparities in color compo-
nents”. In: Signal Processing 174 (2020), p. 107616.

[25] L. Li et al. “Face X-Ray for More General Face
Forgery Detection”. In: 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition
(CVPR). 2020, pp. 5000–5009. DOI: 10 . 1109 /
CVPR42600.2020.00505.

[26] Yuezun Li, Ming-Ching Chang, and Siwei Lyu.
“In ictu oculi: Exposing ai generated fake face
videos by detecting eye blinking”. In: arXiv preprint
arXiv:1806.02877 (2018).

[27] Yuezun Li and Siwei Lyu. “Exposing deepfake
videos by detecting face warping artifacts”. In: arXiv
preprint arXiv:1811.00656 (2018).

[28] Yuezun Li et al. Celeb-DF: A Large-scale Challeng-
ing Dataset for DeepFake Forensics. 2020. arXiv:
1909.12962 [cs.CR].

[29] Honggu Liu et al. “Spatial-phase shallow learning:
rethinking face forgery detection in frequency do-
main”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021,
pp. 772–781.

[30] Francesco Marra et al. “Detection of gan-generated
fake images over social networks”. In: 2018 IEEE
Conference on Multimedia Information Processing
and Retrieval (MIPR). IEEE. 2018, pp. 384–389.

[31] Francesco Marra et al. “Do gans leave artificial fin-
gerprints?” In: 2019 IEEE Conference on Multimedia
Information Processing and Retrieval (MIPR). IEEE.
2019, pp. 506–511.

[32] Iacopo Masi et al. “Two-branch recurrent network for
isolating deepfakes in videos”. In: European Confer-
ence on Computer Vision. Springer. 2020, pp. 667–
684.

[33] Falko Matern, Christian Riess, and Marc Stam-
minger. “Exploiting visual artifacts to expose deep-
fakes and face manipulations”. In: 2019 IEEE Win-
ter Applications of Computer Vision Workshops
(WACVW). IEEE. 2019, pp. 83–92.

[34] Scott McCloskey and Michael Albright. “Detecting
GAN-generated imagery using saturation cues”. In:
2019 IEEE International Conference on Image Pro-
cessing (ICIP). IEEE. 2019, pp. 4584–4588.

[35] Yisroel Mirsky and Wenke Lee. “The creation and
detection of deepfakes: A survey”. In: ACM Comput-
ing Surveys (CSUR) 54.1 (2021), pp. 1–41.

[36] H. H. Nguyen, J. Yamagishi, and I. Echizen.
“Capsule-forensics: Using Capsule Networks to De-
tect Forged Images and Videos”. In: ICASSP 2019
- 2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 2019,
pp. 2307–2311. DOI: 10.1109/ICASSP.2019.
8682602.

[37] Yuyang Qian et al. “Thinking in frequency: Face
forgery detection by mining frequency-aware clues”.
In: European Conference on Computer Vision.
Springer. 2020, pp. 86–103.

[38] Weize Quan et al. “Distinguishing between natural
and computer-generated images using convolutional
neural networks”. In: IEEE Transactions on Informa-
tion Forensics and Security 13.11 (2018), pp. 2772–
2787.

[39] Danilo Jimenez Rezende, Shakir Mohamed, and
Daan Wierstra. “Stochastic Backpropagation and
Approximate Inference in Deep Generative Models”.
In: ed. by Eric P. Xing and Tony Jebara. Vol. 32.
Proceedings of Machine Learning Research 2. Be-
jing, China: PMLR, 22–24 Jun 2014, pp. 1278–1286.
URL: http://proceedings.mlr.press/
v32/rezende14.html.

[40] Andreas Rossler et al. “FaceForensics++: Learning
to Detect Manipulated Facial Images”. In: Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision (ICCV). Oct. 2019.

[41] Yiwei Ru et al. “Bita-Net: Bi-temporal Attention
Network for Facial Video Forgery Detection”. In:
2021 IEEE International Joint Conference on Bio-
metrics (IJCB). IEEE. 2021, pp. 1–8.

[42] Ekraam Sabir et al. “Recurrent convolutional strate-
gies for face manipulation detection in videos”. In:
Interfaces (GUI) 3.1 (2019).

[43] Ke Sun et al. “Deep high-resolution representation
learning for human pose estimation”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition. 2019, pp. 5693–5703.

[44] Michail Tarasiou and Stefanos Zafeiriou. “Extract-
ing deep local features to detect manipulated images
of human faces”. In: 2020 IEEE International Con-
ference on Image Processing (ICIP). IEEE. 2020,
pp. 1821–1825.

[45] Ruben Tolosana et al. “Deepfakes evolution: Analy-
sis of facial regions and fake detection performance”.
In: International Conference on Pattern Recognition.
Springer. 2021, pp. 442–456.

2837



[46] Cristian Vaccari and Andrew Chadwick. “Deepfakes
and disinformation: exploring the impact of syn-
thetic political video on deception, uncertainty, and
trust in news”. In: Social Media+ Society 6.1 (2020),
p. 2056305120903408.

[47] Mika Westerlund. “The emergence of deepfake tech-
nology: A review”. In: Technology Innovation Man-
agement Review 9.11 (2019).

[48] Yuting Xu et al. “Visual-Semantic Transformer for
Face Forgery Detection”. In: 2021 IEEE Interna-
tional Joint Conference on Biometrics (IJCB). IEEE.
2021, pp. 1–7.

[49] Xin Yang, Yuezun Li, and Siwei Lyu. “Expos-
ing deep fakes using inconsistent head poses”.
In: ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2019, pp. 8261–8265.

[50] Semih Yavuzkilic et al. “Spotting Deepfakes and
Face Manipulations by Fusing Features from Multi-
Stream CNNs Models”. In: Symmetry 13.8 (2021),
p. 1352.

[51] Ning Yu, Larry S Davis, and Mario Fritz. “Attributing
fake images to gans: Learning and analyzing gan fin-
gerprints”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2019, pp. 7556–
7566.

[52] Daichi Zhang et al. “Detecting Deepfake Videos with
Temporal Dropout 3DCNN”. In: ().

[53] Peng Zhou et al. “Learning rich features for image
manipulation detection”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition. 2018, pp. 1053–1061.

[54] Peng Zhou et al. “Two-stream neural networks for
tampered face detection”. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition Work-
shops (CVPRW). IEEE. 2017, pp. 1831–1839.

2838


