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Abstract—Developing an accurate tourism forecasting model
is essential for making desirable policy decisions for tourism
management. Early studies on tourism management focus on
discovering external factors related to tourism demand. Recent
studies utilize deep learning in demand forecasting along with
these external factors. They mainly use recursive neural network
models such as LSTM and RNN for their frameworks. However,
these models are not suitable for use in forecasting tourism
demand. This is because tourism demand is strongly affected by
changes in various external factors, and recursive neural network
models have limitations in handling these multivariate inputs.
We propose a multi-head attention CNN model (MHAC) for
addressing these limitations. The MHAC uses 1D-convolutional
neural network to analyze temporal patterns and the attention
mechanism to reflect correlations between input variables. This
model makes it possible to extract spatiotemporal characteristics
from time-series data of various variables. We apply our fore-
casting framework to predict inbound tourist changes in South
Korea by considering external factors such as politics, disease,
season, and attraction of Korean culture. The performance results
of extensive experiments show that our method outperforms
other deep-learning-based prediction frameworks in South Korea
tourism forecasting.

Index Terms—Tourism Demand Forecasting, Deep Learning,
Multi-head Attention CNN, Multivariate time-series Prediction,
South Korea Tourism

I. INTRODUCTION

As exchanges between countries increase, the tourism indus-
try in each country becomes more important. For developing
the tourism industry, tourism demand is essential in estab-
lishing tourism policy, business plan, and strategy revision.
Therefore, tourism management needs to discover external

factors related to tourism demand and design an accurate
prediction model.

Unlike earlier studies that mainly used regression models,
recent tourism demand forecasting studies [1], [2] utilize se-
quential deep learning models such as RNN (Recurrent Neural
Network) [3] and LSTM (Long Short Term Memory) [4] in
their prediction framework. And the latest studies [5], [6] of
tourism demand forecasting mainly design a framework based
on this sequential neural network model. These predictive
models show better accuracy than regression models.

Recurrent-based networks (RNN, LSTM) are mainly used
in tourism demand forecasting due to their excellent perfor-
mance, but have the following limitations. First, the recurrent
network models are structured to extract temporal features of
a single variable, while tourism demand variables are affected
by other external factors (e.g., the number of tourists entering
a country is influenced by oil prices.) [2]. So, the recurrent
models are difficult to interpret variable-wise correlation,
which leads to the limitation of forecasting performance. In
addition, RNN and LSTM models have an autoregressive
structure in which prediction values are put back as input. This
structure has poor long-term prediction accuracy when the data
has a nonlinear trend, whereas the long-term forecasting of
tourism demand plays a vital role from a practical point of
view. Therefore, autoregressive-based prediction models are
not suitable for practical forecasting.

We present a Multi-Head Attention Convolutional neural
network (MHAC) model for forecasting tourism demand to
address the problems mentioned above. The proposed model
receives historical multivariate time-series information and
outputs a sequence of how the interest variable will change in



the future. With multivariate time series as inputs, separated
CNN (Convolutional Neural Network) layers independently
interpret temporal patterns of the individual variable. Also, the
model employs an attention module for discovering correla-
tions between multiple variables. Finally, the tourism demand
prediction sequence is output at once through attention content
and temporal feature.

The proposed method is designed to predict the demand for
foreign entrants in South Korea. To the best of our knowl-
edge, there are no deep-learning-based prediction framework
studies suitable for South Korea’s tourism data. We design a
deep learning model that predicts tourism demand in South
Korea using a multivariate time series. As in other tourism
management studies [7], we consider several extrinsic factors
related to the inbound tourist of South Korea. Then, the
proposed MHAC model predicts the tourist trend by reflecting
the considered variables and the historical tourist trend data as
inputs. As a result of the prediction experiment, our forecasting
framework shows the high accuracy of demand forecasting for
tourists visiting South Korea. Especially, it shows good fore-
casting performance even in extreme situations (e.g., COVID-
19 pandemic).

Our contributions in this paper are as follows:
• A novel time-series forecasting framework for tourism

management is proposed. This framework has a structure
that receives several extrinsic variables as input and
outputs future sequences of the tourism demand variable.

• We introduce a multi-head attention CNN model
(MHAC) that receives multivariable time-series inputs,
extracts temporal characteristics, and interprets correla-
tions between variables.

• We utilize the proposed framework to predict the demand
for foreign inbound tourists in South Korea. We explore
various external factors related to South Korea’s tourism
demand and reflect them in the forecasting model.

II. PREVIOUS WORK

In early studies of tourism demand forecasting, research is
mainly focused on predictions in specific regions and specific
tourism industry sectors [8]–[13]. Most of these studies use
regression models, mainly used for time-series prediction, or
classical machine learning techniques such as Support Vector
Machine (SVM) [14] when designing predictive models. For
instance, Chen et al. used the support vector regression model
to predict the number of foreigners entering China between
1985 and 2001 [15]. Assaf et al. devised the Detrended
ARIMA model to predict the number of tourists entering
Australia in both the short and long term [8]. Akın et al.
designed a prediction model based on the Seasonal ARIMA
model to predict the monthly foreign inbound in Turkey [16].

Existing studies of tourism demand forecasting mainly
focus on the discovering data from specific tourism industries
of each region or country rather than designing a specific
forecasting model. The regression models used as prediction
models in previous studies show good performance in pre-
dicting tourism demand in particular regions. However, there

are some limitations to these existing studies. First, utilized
regression models such as ARMA, ARIMA, and classical
machine learning models such as SVM commonly show poor
forecasting performance with non-stationary time-series data.
In addition, these studies constructed a prediction framework
using only a single variable such as the past entrants data.
There is a limitation in that various external factors affecting
the tourism industry are not considered.

Beyond the study of designing a prediction framework using
single time-series data, several recent studies have proposed a
multivariate prediction model using deep learning. The deep
learning techniques of the recurrent neural network series such
as LSTM [4] have received attention as a tourism demand
prediction model. Zhang et al. use historical hotel guest data,
and Baidu index data to predict the trend of hotel guests in
Hunan, China and designs an LSTM-based predictive model
that can reflect these multiple variables [1]. Kulshrestha et
al. design a prediction framework based on the Bidirectional
LSTM model to predict monthly Macau visitors [5]. In a recent
study, an LSTM model with an attention module [17] added
is devised to consider the correlation between various input
variables that influence tourism demand [2].

As such, recent studies attempt to analyze various time-
series patterns by designing more advanced recursive models.
They consider not only historical data of the variable to be
predicted, but also various data related to the target variable
(e.g., Google Trends, Baidu Index, etc.). However, frameworks
of these studies have a structure to separately predict by
constructing a recursive model for each variable. Since this
structure cannot interpret correlations between variables, the
recurrent-based models are restricted in precisely forecasting
tourism demand that is affected by multiple factors. To handle
this problem, a model having a structure other than the
recursive model is required.

III. DATA

Before explaining the forecasting framework, we introduce
data to be used in forecasting South Korean tourism demand.
Novel variables that haven’t been considered in the field of
Korean tourism management are introduced.

A. Problem Description

We forecast concrete tourism demand trends for a certain
period for a more practical tourism demand forecasting. The
proposed prediction framework is a time-series prediction
model that receives multivariate time-series data as input and
outputs a sequence of a single interest variable. A multivariate
time-series input Xt for prediction framework is below:

Xt = {xt−m+1,xt−m+2,xt−m+3, · · · ,xt}

where xi ∈ Rn indicates n multivariate inputs at time point
i. Note that t refers to a specific time point, and m is the
input window size. The multivariate input data having n
variables which includes past foreign entrant data which is
target variable, and n − 1 external variables related thereto.
The prediction result Ŷt is as follows.



Fig. 1. Daily data graph of foreign entrants in South Korea.

Fig. 2. Results of time-series decomposition of processed foreign entrants
data. The original data graph, trend graph, seasonality graph, and residual
graph are shown from the top.

Ŷt = {ŷt+1, ŷt+2, · · · , ŷt+k}

Here, ŷi is the single target variable at time point i, which
indicates the predicted number of foreigners entering South
Korea. k refers to the output window size. A ground-truth
value is Yt, which is shaped the same as Ŷt. In summary, Xt

is a n ×m shaped multivariate time-series input matrix, and
Ŷt is a 1× k shaped univariate time-series output vector.

B. Foreign Entrants Data

This paper uses the foreign entrants data from January 1,
2010, to September 30, 2020, provided by the Korea Tourism
Organization. The provided visitor data is aggregated in all
provinces in South Korea. This data shows the daily number of
foreigners entering South Korea from 21 countries, including
China, Japan, and the United States. We define this foreign
entrant variable as the main variable, which is a variable to
use for both input and prediction. Figure 1 shows the overview
of given foreign entrant data.

We would like to analyze the characteristics of this foreign
entrant data and find related external factors. The time-series
decomposition is performed with data on foreign entrants
summed up the number of entrants before and after 15 days of
a certain day (i.e., 30-day moving sum). The results of time-
series decomposition of preprocessed foreign entrants data are
shown in Figure 2.

TABLE I
A DESCRIPTION OF THE INPUT VARIABLES USED IN THE PREDICTION

FRAMEWORK.

Kinds Factor Name Data Type
External Politics Hanhanlyeong Dummy Variable

Disease Pandemic Dummy Variable
Seasonality Season Dummy Variable
Attraction Google Trend Numeric

Main Entrant Foreign Entrant Data Numeric

The overall trend of entrants increased until 2017. As of
the first half of 2017, the trend declined and then increased
again. It is for the decrease in Chinese tourists, which account
for the largest proportion of tourists visiting South Korea.
The reason for the decline in Chinese tourists is the Chinese
restrict policy against Korean culture, which is related to
deteriorated Sino-South Korea Relations. Note that the number
of entrants dramatically plummeted since February 2020 when
the travel restrictions due to COVID-19 were taken. Like
this case, the number of tourists sharply declines during the
MERS epidemic (June 2015 to August 2015), which was a
short-period epidemic in South Korea. The seasonality graph
shows that a larger number of entrants usually comes in
fall rather than in spring. The residual graph shows that the
residual is very large, unlike other conventional time-series
data. In conclusion of data analysis, the overall data of foreign
entrants have irregular, inconsistent patterns and is influenced
by certain external factors.

C. Extrinsic Variables

Extrinsic factors correlated to tourism should be considered
as well as main variables for precise prediction. Rather than
using external variables such as economy metrics or the
oil price [18], [19], recent studies utilize external variables
directly related to forecasting tourism demand (e.g., Google
trends [20], [21], seasonal components [22], climate data [23],
etc.). In our method, external factors influencing South Korea’s
tourism demand are used as input variables.

We select external factors based on the results of the
data analysis briefly mentioned above. We consider Politics,
Diseases, Seasons, and Attraction as representative external
variables that directly affect tourism in South Korea. A sum-



mary of the input variables considered is presented in Table I.
A description of each variable is explained below.

Politics Variable According to the provided foreign entrants
data, Chinese tourists visit South Korea the most (About 35%).
Therefore, the demand for tourism in South Korea is greatly
affected by diplomatic relations between South Korea and
China. For instance, the number of foreign arrivals changes
significantly because of the deterioration of Sino-South Korea
relations since 2017, as mentioned above. We use the variable
”Hanhanlyeong,” a sanctions policy against Korean culture
in China, as an external factor representing the diplomatic
and political situation in South Korea [24]. This restriction
policy has been in effect since March 2017. The Hanhanlyeong
variable is a dummy variable that consists of 0 and 1. The
time-series value of this variable is set to 1 from March 1,
2017, to September 30, 2020 (Dataset Endpoint), when these
sanctions policy against South Korea is in effect, and 0 for
other periods.

Diseases Variable During the epidemic period, travel and
exchanges are restricted, so the number of people entering
or leaving South Korea drops sharply. From June 2015, the
period when the epidemic MERS was prevalent in South
Korea, to August of the same year, and from February 2020,
the period when the COVID-19 pandemic worldwide, the
number of foreign entrants has sharply decreased. Based on
these observations, we create dummy variables that reflect the
duration of the epidemic outbreak. The variable is set to 1
during the MERS outbreak period (June 1, 2015, to August
31, 2015) and the COVID-19 epidemic (February 1, 2020, to
September 30, 2020), and the variable is set to 0 for other
periods.

Seasonal Variable As the results of the time-series decom-
position in Figure 2, entrant data has seasonality. Thus, we
use seasonal dummy variables to utilize the seasonality of the
data in the predictive model. The seasonal variable is a dummy
variable time-series with a total of 4 channels reflecting spring,
summer, autumn, and winter. The variable is set to 1 for each
season and 0 for other periods.

Attraction Variable In several existing studies, Google Trends
and Baidu Index related to each region are used in the tourism
demand forecasting framework [21], [25], [26]. It can be
interpreted that searching for a search word related to tourism
on a portal site indicates the degree of tourism interest in
the region or country. We also consider Google Trends, which
shows the trend of search volume for keywords that are highly
related to Korean tourism. We choose ’Seoul Hotel’, ’Korea
Tour’, ’Incheon Airport’, and ’Myeongdong’ as keywords
related to Korean tourism, which represent accommodation,
tourism, aviation, and attractions each [27]. The Google Trends
represents the relative trend of the search volume for a specific
search word over a certain period of time as a real value
between 0 and 100. Our work uses Google Trends data from
January 1, 2017, to September 30, 2020, which is the entire
period of foreign entrant data.

IV. FORECASTING MODEL

We would like to design a novel neural network model that
is suitable for forecasting tourism demand. In this paper, a
multi-head attention model with convolutional neural network
layer (MHAC) is proposed. The overall structure of the pre-
dictive model MHAC is shown in Figure 3.

A. Multi-Head Structure

We introduce a multi-head neural network structure to
extract features variable-wise. As described in Section III, the
input variables have different data structures (numeric type,
dummy type), and the temporal features of each variable are
very diverse. Putting whole variables into a shared single
neural network is unsuitable for handling multiple variables
with different time-series characteristics. The proposed multi-
head structure extracts the temporal features of individual
variables with a parallel neural network layer. This structure
has the advantage of extracting features for each variable by
independently tuning the hyper-parameters for each head layer.
Since there are a total of 5 types of variables, we design a
forecasting model with a 5-multi-head structure.

B. 1-Dimensional Temporal CNN

Several studies [28]–[31] have proposed CNN-based models
to process sequential data of signal processing, time-series
classification, speech recognition, etc. These previous studies
demonstrate a one-dimensional CNN advantage in extracting
temporal features from data with irregular and diverse patterns,
such as the provided foreign entrant data. We add a multi-head
temporal 1D-CNN layer to interpret the pattern of the time-
series data variate-wise. For the t-th input sequence X

(i)
t of

single variable i, the latent feature Z
(i)
t is extracted through

the following function Equation (1).

Z
(i)
t = σ(fi(X

(i)
t )), i ∈ [1, n] (1)

Here, fi(·) indicates the ith head of the temporal-CNN layer,
and σ(·) refers to ReLU and MaxPool1D layer. The detailed
hyper-parameters of the multi-head CNN layer are described
in Section V-D.

C. Attention Module

We add the attention module to the prediction model to
reflect the correlation between each extrinsic factor and the
entrant data. The attention module receives Query, Key, and
Value and outputs context vector. To give attention to the
extracted features Zt, Query, Key, and Value are calculated
through the following Equation (2).

Qt = WqZt, Kt = WkZt, Vt = WvZt (2)

Note that W indicates weight matrix for Equation (2), and
Qt, Kt, Vt are the query, key, and value from latent feature
Zt, respectively.

Then, the attention Score is obtained from Query and Key
by Equation (3).



Fig. 3. A structure of the proposed MHAC model. The time-series features of each input variable are extracted through an independent CNN layer. Then
it is emphasized which part of individual features is important through the Attention Module. Finally, prediction results are derived through the weight
normalization added fully-connected layer with the vector extracted through the attention module and the features extracted through the CNN layer. Note that
the number notation next to the Input Variable is the enumerated variable number.

Score(Qt,Kt) = tanh(ẂqQ
T
t + ẂkK

T
t + b) (3)

where Ẃ refers to weight matrix for Equation (3) and b is
bias.

Finally, Equation (4) shows how to derive the final Context
vector Ct through obtained Score(Qt,Kt).

Ct = Flatten(Softmax(Score(Qt,Kt))V
T
t ) (4)

Context vector Ct obtained through the attention layer is
concatenated with the latent feature Zt and enters the input of
the last fully-connected layer.

D. Weight Normalization

The proposed forecasting framework outputs the prediction
sequence. According to Gehring et al. [32], their experiments
demonstrate that the weight normalization method achieves
better performance than the conventional batch normalization
method in the sequence-output framework with the CNN
structure. Based on this idea, we add a weight normalization
layer in front of the fully-connected layer in the forecasting
model. The normalized weight vector of the fully-connected
layer w is as shown in Equation (5).

w =
g

||v||
v (5)

Fig. 4. Structure of the attention module.

where g is a scalar parameter, v indicates a k-dimensional
vector, and ||v|| is the Euclidean norm of v [33]. By adding a
weight normalization layer, the proposed model can become
more robust to the values of learning hyper-parameters such
as learning rate. Also, weight normalization reduces the like-



Fig. 5. The process of creating a data segment in a sliding window manner.
For a training dataset with a total length of Lt, a data segment is generated
by sliding the window by 1 time unit. The blue window is an input window
with a length of m, and the red window is a ground-truth window with a
length of k.

lihood of convergence with sharp minima, thereby improving
generalization performance [34].

V. EXPERIMENT SETTING

A. Input Data Description

In our experiments, the daily foreign entrant data and
the daily data of the extrinsic factors are used, which are
mentioned in Section III. More specifically, we use five
input variables: foreign entrant data, politics (Hanhanlyeong)
dummy variable, disease dummy variable, seasonal dummy
variable, and attraction variable (Google trend data of keyword
’Seoul hotel’) respectively. Daily data has 3926 days from
January 1, 2010, to September 30, 2020. During this period,
we set data up to December 31, 2018, as training data, and
data from January 1, 2019, as test data.

B. Preprocessing

As explained in Section III-A, our framework predicts the
trend of entrants within the future k days through m data of
n variables in the past. We set k = 30, m = 30, and n = 5.
A window of size m + k is created and data segments are
generated by pushing 1 time unit for the entire dataset period
using a sliding window method. Therefore, Lt −m − k + 1
training data segments are generated for the total length Lt of
training dataset. The first m data are input data, and the last k
data are ground-truth. In the same way, test data segments are
also created from the test dataset. Figure 5 shows the process
of creating data segments using the sliding window method.

C. Data Augmentation

The total length of the provided daily foreign entrant data
is about two years and nine months. time-series data of this
length is not sufficient to train the model. Moreover, it is
difficult to train with provided data since the pattern itself
is very diverse compared to the data length. So, we augment
the time-series data for more stable training results and higher
prediction accuracy.

Unlike other augmentation methods such as cropping or
rotation, time-series data is mainly augmented by using spe-
cific methods like window warping [35], flipping, Fourier

Fig. 6. Data Augmentation Toy Example. The horizontal axis represents the
time of the data segment, and the vertical axis represents the corresponding
variable values. Individual variables in a data segment are augmented like this
example.

transform [36], and down-sampling. Among them, a simple
method of adding Gaussian noise is often used [37]. This data
augmentation technique improves performance in time-series
prediction models such as DeepAR [38].

In this paper, we apply a new technique to augment time-
series data to fit the proposed MHAC model. The training
data is augmented by generating data obtained by multiplying
statistical noise to the existing training data. The method of
augmenting training data is as follows:

1) Prepare variance vector V for n input variables like
below.

V = {v1, v2, · · · , vn}

where vi is the variance of the variable i. Note that i is
the numbered index of the enumerated n input variables.

2) Prepare 1 input data matrix Xt and corresponding
ground-truth value Yt at time point t mentioned in
Section III-A.

3) Generate the noise εti for that follows the following log-
normal distribution.

εti ∼ Logn(0, 0.2vi)

4) Create the following error matrix Et.
εt1 0 . . . 0
0 εt2 . . . 0
...

...
. . .

...
0 0 . . . εtn


5) Create the augmented data X′t and the corresponding

ground truth Y′t through the following equations.

X′t = EtXt

Y′t = EtYt

6) Repeat for every data segment.
Training data is augmented based on the aforementioned

method. An example of augmented data is shown in Figure
6. In this paper, the training data is augmented by a total of



Fig. 7. Prediction result graphs of each prediction model. From the top, 1D-CNN, Bidirectional LSTM, CNN-LSTM, and MHAC.

9 times the training data. The performance of the model is
verified only with test data that has not participated in data
augmentation.

D. Hyper-parameter Setting

The learning rate is 0.001, and the optimizer is Adam [39].
The total training epoch is 50, and 20% of the training data
is used as verification data.

The number of output channels of the CNN Layer of each
input variable is samely set to 4, and stride is samely set
to 1. The sizes of the 1D kernel in the CNN Layers are 5,
3, 3, 3, and 5, referred to as the Foreign entrant, Politics,
Disease, Season, and Attraction variable, respectively. In CNN
layers, a causal convolution is performed in consideration of
the temporal features of the input variables. The same-padding
is adjusted so that the length of the latent features does not
change from the input shape (i.e., Z

(i)
t ∈ Rm×4, where 4

indicates the number of output channels of the CNN Layer).
The activation function of CNN Layer is ReLU. Lastly, the
final fully connected layer has a 25% dropout rate.

The batch size is 4, smaller than that of other conventional
deep learning experiments because the training procedure is
unstable with larger batch size. In addition, the loss function
is set to Mean Squared Error (MSE).

VI. EXPERIMENT RESULTS

The final output result is sequential data with k lengths.
Since the generated data segment was created in the form of
a 1 time unit sliding window, k output results are overlapped
for a single time point. We firstly use methods evaluated in the
existing tourism demand forecasting study to see the concrete
forecast results. So we only plot the resulting graph for a single
time point. In the resulting graph to be described later, the
prediction time point is after one day.

Since our forecasting framework outputs sequential forecast
results, a more detailed evaluation is needed in addition
to graphing the forecast results for a single time period.
Therefore, we evaluate the performance of the prediction
model using forecasting performance metrics [40]. We use
Mean Absolute Percentage Error (MAPE), Root Mean Squared
Error (RMSE), and empirical correlation coefficient (CORR)
as evaluation indicators.

Lastly, we would like to observe the reliable results of the
experiments. Therefore, we conducted the same experiment 5
times and averaged the results.

A. Comparison With Other Prediction Models

We conduct prediction experiments with the proposed model
and other deep learning models. Bidirectional LSTM [41],



TABLE II
PERFORMANCE EVALUATION RESULTS COMPARED TO OTHER

TIME-SERIES PREDICTION MODELS.

Model MAPE RMSE CORR
1D-CNN 93.2% 67972.5 0.3915

Bi-Directional LSTM 54.75% 56871.1 0.4897
CNN-LSTM 102.4% 78114.9 0.3078

MHAC(Ours) 25.7% 32195.1 0.7359

TABLE III
EXPERIMENT RESULTS ON REMOVING A CERTAIN EXTERNAL FACTOR.

Variable MAPE RMSE CORR
With 5 variables 25.7% 32195.1 0.7359

w/o Politics 36.5% 41192.3 0.6105
w/o Disease 86.7% 60878.4 0.4017
w/o Season 40.3% 42177.9 0.5275

w/o Attraction 91.9% 65515.9 0.3990

CNN-LSTM [42], and 1D-CNN [43] are selected as compari-
son models. All of the presented comparison models are deep
learning models that are frequently used in the time-series
prediction field recently. Each prediction model has the same
input size and output size. The prediction performance results
for each model are presented in Figure 7 and Table II.

The predictive evaluation indicators for the entire test period
are presented in Table II, which shows that the MHAC model
has better predictive performance than the other deep learning
models. In particular, our prediction model is superior to other
prediction models in the CORR result. The MHAC model
infers the overall trend better than the comparison models.

Figure 7 shows each prediction model’s foreign entrants
prediction results from January 1, 2019, to September 30,
2020, the test period. The blue line is the actual data, and
the red line is the predicted value. According to the graphs
of each prediction model, all models are somewhat inaccurate
in predicting very detailed patterns—however, the proposed
model, MHAC, is superior to other models in following
complex patterns and trends. In particular, from February 1,
2020, to September 30, 2020, during the COVID-19 outbreak,
it is observed that our predictive model infers the number of
foreign entrants during this period better than other compari-
son models.

B. In-Depth Experiment

We design in-depth experiments on the proposed methods.
We conduct experiments on the effect of the external factors
used, the effect on data augmentation, and the batch size.
Effect of the External Factors We perform an experiment
to compare the prediction results for whether or not external
factors are used. Each experiment is performed in which a
single external factor is removed. Fine-tuning is performed
separately by setting the head of the MHAC model to 4. The
prediction experiment results are presented in Table III.

We observe that the prediction results when each variable
is subtracted are worse than the original one. In particular, it
appears that the performances are much worse when Disease

TABLE IV
PERFORMANCE RESULTS ACCORDING TO THE NUMBER OF AUGMENTED

DATA.

Augmentation MAPE RMSE CORR
13-time Augmented 25.9% 33585.1 0.7360
9-time Augmented 25.7% 32195.1 0.7359
5-time Augmented 29.8% 35988.9 0.7006
1-time Augmented 49.7% 45971.7 0.6114
w/o Augmentation 79.9% 60913.2 0.4389

TABLE V
EXPERIMENT RESULTS OF TUNING BATCH SIZE.

Batch size MAPE RMSE CORR
1 31.8% 37005.8 0.6979
2 26.0% 32071.9 0.7298
4 25.7% 32195.1 0.7359
8 30.1% 39267.1 0.7113

16 35.8% 41936.5 0.6618
32 46.6% 45991.0 0.6249
64 52.7% 52107.9 0.5908

or Attraction variable is removed. We show that our variables
have some influence on the predictive performance. Also, we
see that Disease variable and Attraction variable have a great
correlation in predicting the number of foreign entrants in
South Korea.
Effect of the Data Augmentation We design an experiment
on the effect of our proposed time series data augmentation.
Prediction experiments are conducted according to the number
of augmented data. Experiments with 13-time augmented, 9-
time augmented, 5-time augmented, 1-time augmented, and
no augmentation are performed, respectively. Note that ”9-
time augmented” means that the entire data was augmented
9-times by the proposed method, which is for the original
experiment. The forecasting results for each experiment are
shown in Table IV.

As shown in the experimental results, we observe that
the performance improves as the number of data increases.
However, there is no significant difference in the performance
between the 9-time and 13-time augmentation experiments. It
is assumed that as the augmented data becomes too large, data
redundancy occurs and the performance is not significantly
improved.
Study about Batch Size We design experiments with different
batch sizes. Experiments on the batch size are performed for
1, 2, 4, 8, 16, 32, and 64, respectively. The performance results
of tuning batch size are presented in Table V.

As we described in Section V-D, the prediction accuracy
drops sharply as the number of batches increases. On the
one hand, there is no significant improvement in prediction
performance when the batch size is extremely small (1, 2).
We see that the performance is sensitively dependent on the
batch size in our framework.

C. Ablation Studies on the Structure

We additionally conduct ablation experiments to determine
how much the weight normalization, attention module, and



TABLE VI
ABLATION EXPERIMENT RESULTS OF MHAC MODEL.

Model MAPE RMSE CORR
Original MHAC 25.7% 32195.1 0.7359
w/o WN Layer 81.5% 79681.1 0.4892

w/o Attention Module 51.8% 43690.7 0.5263
Single CNN Structure 60.6% 59188.6 0.4720

multi-head structure in the MHAC model affect the prediction
results.
Weight Normalization We would like to analyze how much
weight normalization (WN) affects the prediction perfor-
mance. So an ablation experiment is performed by removing
weight normalization from the fully connected layer of the
proposed MHAC model. All other settings are the same. The
experimental ablation results are presented in Table VI.

In the results of Table VI, the predictive model’s perfor-
mance is worsened when weight normalization is removed.
Especially, the RMSE metrics differ greatly because weight
normalization allows the forecasting model to interpret de-
tailed patterns better, while the MHAC model without weight
normalization shows a large error due to unstable learning.
Attention Module We compare the original MHAC model and
the MHAC model with only the attention module removed.
All other conditions remain the same except for the attention
module between the convolutional and fully connected layers.
The prediction results for the ablation experiment of the
attention module are presented in Table VI.

The results when the attention module is included in the
predictive model are better than when the attention module is
not included. Extracting the correlation between each variable
through the attention module of the features gathered through
the convolutional layer helps in a good forecasting result.
Multi-Head Structure The experiment is conducted by re-
placing the CNN part of the MHAC model with the multi-
head CNN structure into a single CNN layer. Input variables
of the same input size are input to the model channelwisely.
The attention module and the fully connected layer of the
prediction model are the same. The experimental results for
the multi-head structure are presented in Table VI.

As shown in the results of Table VI, the multi-head CNN
structure and the single CNN structure show very large dif-
ferences in the prediction results. In addition, the prediction
performance differs greatly in the CORR metric, which shows
the multi-head CNN structure is more advantageous in infer-
ring the long-term trend than the single CNN structure.

VII. CONCLUSION

We propose a multi-head attention CNN model to predict
the foreign entrants of South Korea with high accuracy. Not
just using only past foreign entrants data, we additionally
utilize various external factors related to Korean tourism as
input variables in the prediction model. By conducting a
comparative experiment with other deep learning prediction
models, it is shown that the proposed prediction model has

higher accuracy in predicting South Korea’s tourism demand.
As a future study, we will explore whether the proposed model
can be used for forecasting tourism demand in other countries
and for other multivariate time series forecasting fields.
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