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Abstract

The main challenge in machine-learning for
video classification is understanding ‘Spatial In-
formation’ and ‘Temporal Information.’ While
significant progress has been made in extract-
ing spatial information by developing 2D image
classification models, the ‘Temporal Informa-
tion’ extraction has not advanced as much. One
possible reason is that a comprehensive defini-
tion of temporal information has not yet been es-
tablished. This paper proposes a novel definition
of ‘Temporal Information’ in video classifica-
tion consisting of ‘Movement Information’ and
‘Temporal Ordering Information.’ To demon-
strate this, we conduct simple experiments using
different timeline variations: Original, Reverse,
and Stack. Furthermore, we evaluate how well-
existing video classification models capture tem-
poral information. To assess the meaningfulness
of temporal ordering information in the feature
vector obtained from video classification mod-
els, we modify the classifier to predict the Origi-
nal and Reverse data. These experiments show
that most existing video classification models
struggle to recognize temporal ordering informa-
tion. Our findings are validated using benchmark
datasets such as UCF101 and Kinetics400, along
with several well-established baseline models.

Keywords— Video Classification, Temporal informa-
tion

I. INTRODUCTION

Most video classification models have been studied
through methods of trying to find spatial and temporal
information in video. ‘Spatial information’ is a feature
from a single frame of video, meaning visual informa-
tion, and ‘Temporal information’ is a feature from multi-
frames of video. There are two types of models that per-
form video classification: a model based on a two-stream
network that separately detects ‘Spatial information’ and

Fig. 1. This result is a class where Reverse or Stack showed
higher accuracy than Original in a model trained with Origi-
nal data. Original is forward video, Reverse is reverse video,
and Stack is video created with only one image representing the
video.

‘Temporal information’[17, 14, 20, 5] and a model that de-
tects ‘Saptio-temporal information’[7, 3, 2, 8, 4] which im-
plies the combination of spatial and temporal information
jointly.

We propose that existing video classification models ex-
hibit a bias towards spatial information. This bias arises
from two main factors: the utilization of transformed large
pre-trained image classification models to detect temporal
information and the practice of increasing the number of
input frames in the models. When employing a large pre-
trained image classification model, the training process op-
timizes the model to detect temporal information, as spa-
tial information is an inherent aspect of the model. Sim-
ilarly, increasing the input frames may inadvertently in-
troduce more spatial information, as the additional frames
contribute to extracting spatial features. Consequently, the
optimal approach to isolate and detect only temporal in-
formation in situations where existing models are biased
toward spatial information remains a question. This pa-
per proposes dividing temporal information into ‘Move-
ment information’ and ‘Temporal ordering information.’
This distinction serves as our suggested definition for tem-
poral information, allowing for a more comprehensive un-
derstanding of the temporal aspects present in the data.

A prominent approach for evaluating temporal informa-
tion involves manipulating the order of frames in a video.
To examine data without temporal ordering information,
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certain studies have categorized videos into three classes:
normal videos, reversed videos, and videos with randomly
shuffled frames[13, 16]. Shuffled data possesses a random-
ized timeline, although it still contains the inherent move-
ment of objects within the video. We assert that these
features also contribute to temporal information. To fully
exclude such influences, we introduce Stack data, which
comprises a single frame representing the entire video.

It is commonly believed that models trained on Origi-
nal data exhibit the highest performance when tested with
Original data, compared to Reverse and Stack data. This
belief aligns with the general understanding; indeed, we
can observe higher accuracy with Original data. The ex-
isting video classification model is suitable for detect-
ing temporal ordering information. However, the results
in Fig 1 show that certain classes exhibit higher accuracy
for Reverse and Stack data. Previous studies[13, 16] have
suggested that this discrepancy can be attributed to the
dataset’s inductive biases. Specifically, the dataset com-
prises classes where temporal order is not crucial, and in-
stantaneous spatial information holds more importance for
the models to make accurate judgments. Nonetheless, this
explanation does not fully account for the classes that dis-
play a notably high accuracy for Reverse data. To thor-
oughly comprehend our results regarding the Reverse data,
this paper primarily focuses on identifying potential issues
within the models rather than the dataset itself. A detailed
examination of this matter is provided in the IV section of
the paper.

Consequently, this paper is motivated by the observation
that certain classes for existing video classification mod-
els ineffectively handling temporal information. We con-
ducted an investigation with the hypothesis that these chal-
lenges predominantly arise from the models themselves
rather than being inherent to the dataset. In summary, our
contributions are as follows: (i) Introducing a fresh per-
spective on defining temporal information within the realm
of video classification;(ii) Proposing the potential for en-
hanced performance of existing models by integrating in-
creased temporal information during the training process.

II. RELATED WORK

A. Video classification model

Video classification models can be categorized into
two main types: the two-stream model[14, 17, 20, 9] and
the one-stream model[3, 7, 6, 11, 2, 8, 4]. In the case
of the two-stream model, spatial information is extracted
by applying a common image classification model to
video frames. To capture temporal information, this model
employs a technique called ‘Optical flow.’ Optical flow
represents the displacement vectors between consecutive
frames, generated based on the assumptions of ‘Brightness
Consistency,’ ‘Temporal Persistence,’ and ‘Spatial Coher-
ence.’ These assumptions ensure that corresponding posi-

tions in consecutive frames have similar brightness, min-
imal displacement, and consistent directional changes in
neighboring pixels. However, computing optical flow is
time-consuming and does not allow for end-to-end learn-
ing. More recently, researchers have explored using large
pre-trained models in the two-stream model. They uti-
lize a pre-trained model for capturing spatial information
and incorporate the concept of NLP’s Adapter module
to handle temporal information. This approach enhances
the efficiency and effectiveness of training the two-stream
model[10, 9].

The one-stream model can be divided into two main ap-
proaches. The first approach is feeding video frames into
a 2D image classification model to generate a feature vec-
tor. This feature vector is then passed through an RNN-
based or Transformer model to extract spatio-temporal in-
formation. The second approach is to extend existing 2D
image classification models to 3D. This approach uses a
3D Convolution base model, where the filter size becomes
(time × 3 × width × height) to account for temporal in-
formation. Recently, with the successful application of Vi-
sion Transformer(VIT)[1] in image tasks, researchers have
also started applying VIT to video analysis. They divide
the video into patches, incorporating time information, and
utilize VIT-based models for video classification[2, 8, 5].

B. Temporal information

Many existing machine-learning based video classifi-
cation models often overlook the initial step of defining
temporal information and directly analyzing it. However,
it is crucial to establish a clear definition of temporal infor-
mation at the outset. Recent studies [13, 16] try to define
temporal information by conducting various experiments,
including categorizing videos into Original, Reverse, and
Shuffle sequences. These experiments demonstrate the sig-
nificance of temporal order in video classification tasks.
Original refers to videos with frames in the correct chrono-
logical order, Reverse indicates videos with frames in re-
verse order, and Shuffle represents videos with randomly
shuffled frames. The mentioned studies highlight a spe-
cific issue observed in the I section, where certain classes
demonstrate higher accuracy when videos are presented in
a Reverse or Stack order. These studies attribute this phe-
nomenon to the dataset’s inductive bias. They argue that
factors such as camera angles, labeling methods, and ac-
tor movements within the datasets tend to de-emphasize
the importance of temporal information. Additionally, the
relatively short duration of the data contributes to this is-
sue, with UCF101 having an average length of 5.8 seconds
and Kinetics400 having an average length of 9.7 seconds.
The authors suggest that these durations are insufficient for
capturing and leveraging the full temporal dynamics of the
videos. However, this paper contends that the root cause
of this problem lies in the model’s approach to capturing
temporal information.
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A recent study[15] examined the impact of temporal or-
dering information in Video-to-Language models. The re-
searchers established a baseline using a ‘before/after’ setup
and systematically flipped video clips to assess the models’
ability to predict temporal order. The study demonstrated
that existing Video-to-Language models were unable to de-
termine temporal ordering information accurately. More-
over, the paper proposed fine-tuning the models using a
loss function that specifically incorporates temporal order-
ing, leading to overall performance improvements. While
this approach shares similarities with our paper, the criti-
cal difference lies in the task itself. The mentioned study
focused on Video-to-Language models, where altering the
temporal order of input video clips would result in differ-
ent output text. In contrast, a different experimental setup
was required for the Video Classification task addressed in
our paper to investigate the influence of temporal ordering,
as detailed in the III section.

III. METHOD

Fig. 2. The overall method of testing temporal ordering informa-
tion in video classification problem.

The current video classification models demonstrate ex-
cellent performance in classification tasks but often fall
short of fully capturing and utilizing temporal information.
This deficiency arises due to the need for a clear definition
of temporal information within the context of video classi-
fication using machine-learning. In this paper, we aim to
address this issue by defining temporal information and
evaluating the existing video classification models’ capa-
bility to detect and utilize such information. To show that,
we conduct two simple experiments.

First, we experiment by categorizing videos into three
classes: Original, Reverse, and Stack. For the Stack data,
we extract a single image from the video’s midpoint and
concatenate it with the remaining video frames to match
the data shape of the other videos. We adopt this approach
assuming that since UCF101 is a dataset comprising short-
trimmed and single-action videos, the image from the
video’s midpoint represents the video’s overall behavior.

Second, we modify the classifier component of the ex-
isting video classification model to create a binary model

Fig. 3. The graph summarizes the performance of a model trained
and tested on datasets with different temporal orders. The x-
axis represents the training data, including Original, Reverse,
and Stack sequences. The y-axis indicates the accuracy achieved
when testing the model on different datasets.

that distinguishes between Original and Reverse classes,
as depicted in Fig 2. The Original class represents videos
played in the forward direction, while the Reverse class de-
notes videos played in reverse. We hypothesize that if the
feature vector immediately before the classifier in the ex-
isting video classification model adequately incorporates
and represents temporal information, a simple fine-tuning
process would effectively enable the model to address the
temporal classification problem.

IV. EXPERIMENTS

A. Datasets

To evaluate the effectiveness of our method, we con-
ducted experiments on two datasets: UCF101[12] and a
subset of Kinetics400[19]. UCF101 is a motion recogni-
tion dataset encompassing various challenges such as cam-
era motion, object appearance, and pose variations. It con-
sists of 13,321 short-trimmed videos across 101 action
categories. Kinetics400, on the other hand, is an action
recognition dataset comprising realistic action videos col-
lected from YouTube. It includes 306,254 short-trimmed
videos spanning 400 action categories. We utilized differ-
ent base models for our experiments: CNN-RNN-based,
CNN-Transformer, and X3D models were trained using
a base model pre-trained on UCF101, while X3D, I3D,
R3D, and SlowFast models were trained using a model pre-
trained on Kinetics400.

B. Rethinking temporal information

Fig 3 shows the average accuracy results for different
training and testing configurations. The highest average ac-
curacy is observed when training and testing are conducted
on the Original data, followed by the second highest accu-
racy when training and testing are performed on the Re-
verse data. Also, when the Original and Reverse data are
switched during training and testing (i.e., Train: Original,
Test: Reverse, and vice versa), a drop in accuracy is ob-
served. These findings indicate that existing video classi-
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Model LSTM GRU Transformer X3D(U) X3D(K) I3D R3D Slowfast
Base model Train Acc 53.17% 48.18% 97.37% 93.12% 91.79% 86.60% 91.63% 92.74%
Base model Test Acc 60.31% 60.71% 85.95% 83.53% 72.12% 71.65% 74.58% 76.86%
1HL model with SD 50.10% 50.12% 50.10% 64.73% 59.36% 43.22% 67.66% 62.21%
5HL model with SD 50.00% 50.05% 50.00% 61.98% 53.56% 45.81% 57.85% 48.23%
1HL model with LD 50.06% 50.06% 50.14% 61.52% 32.70% 41.78% 39.91% 52.08%
5HL model with LD 50.08% 50.10% 50.04% 68.61% 39.83% 46.23% 41.66% 66.11%

Table 1. In this experiment, we evaluated different models to determine their ability to distinguish between Original and Reverse
classes. HL represents hidden layers applied to the classifier, and the following number indicates the count of hidden layers. SD and
LD represent small dataset and large dataset, respectively, while U and K represent UCF101 and Kinetics400 datasets. The results
presented are the average values obtained from multiple experiments. The models CNN-LSTM, CNN-GRU, CNN-Transformer, and
X3D(U) exhibit a deviation of ±5%. X3D(K), I3D, R3D have a deviation of ±20%, and SlowFast has a deviation of ±10%.

fication models effectively capture temporal information.
However, a different pattern emerges when examining the
results at the class level. When testing the model trained
on the Original data using Original, Reverse, and Stack
data, the accuracy for Reverse data surpasses that of other
classes in 25 out of 101 categories, and the accuracy for
Stack data is highest in 15 out of 101 categories. These re-
sults indicate that there is remaining temporal information
that existing models need to learn.

Another fascinating finding is that the model trained on
Stack data, which lacks explicit time information, exhib-
ited higher accuracy when tested with Original and Re-
verse data. This suggests that object motion plays a signif-
icant role in video classification, leading to the introduc-
tion of the term ‘Movement information’ in this paper. In
summary, we can recognize the two results in the experi-
ments above: First, there is still temporal information that
existing models can learn to improve their performance.
Secondly, temporal information can be further categorized
into ‘Movement information’ and ‘Temporal ordering in-
formation’ to provide a more refined understanding of its
features.

C. Evaluate temporal ordering information

The experiments were conducted from two perspec-
tives: the fine-tuning layer and the size of training data. We
investigated whether it is feasible to discern temporal order
information in the feature vector of a video generated us-
ing an existing model. To accomplish this, we divided the
classifier, distinguishing between the original and reversed
videos, into ‘Light model’ and ‘Deep model.’

The reason for distinguishing between the ‘Light
model’ and the ‘Deep model’ was that the existing fea-
ture vectors were optimized for video classification, and
we hypothesized that the classification task might be chal-
lenging due to insufficient training parameters. The ‘Light
model’ only modified the output layer to binary within the
existing video classification model. On the other hand, the
‘Deep model’ gradually increased the depth of the ’Light
model’ from 1 to 5 in the existing model to determine if the
training parameters were sufficient. Additionally, to assess
the detectability of temporal order from the feature vec-
tor, we divided the classifier training data into small data,

Fig. 4. Change in test accuracy when increasing the number of
hidden layers in Binary classification model with Large data.

utilizing only 10% of the total data, and large data, in-
corporating all available data. We conducted experiments
with 7 base models, including 2 CNN-RNN-based models,
a CNN-Transformer model[20, 17], an R3D, I3D, X3D,
and a SlowFast model[7, 3, 11, 4]. For the CNN-RNN-
based models and CNN-Transformer model, we employed
EfficientNet[18] as the backbone to detect spatial informa-
tion.

In Table 1, ‘Base model training’ and ‘Base model
test’ refer to the base model’s training accuracy and test
accuracy, respectively. The remaining values indicate the
test accuracy after transforming the base model into a bi-
nary classification model that detects Original and Reverse
videos, where the expected accuracy is 50%. The table
demonstrates that the values are randomly distributed, with
the majority centered around 50%. The values in Table
1 are averaged from multiple experiments. The LSTM,
GRU, Transformer, and X3D(U) models exhibited an er-
ror margin of ±5%, while the SlowFast model showed an
error margin of ±10%. The X3D(K), I3D, and R3D mod-
els displayed an error margin of ±20% from the values.
The relatively lower variation in the results obtained from
the model trained on the UCF101 dataset is noteworthy.
This observation could be attributed to the larger size of
the UCF101 dataset compared to the Kinetics400 dataset
used in the experiments.

In Fig 4, most values exhibit a slight increase in ac-
curacy, around 50%, while X3D(U) and Slowfast demon-
strate a notable improvement in accuracy. The Slowfast
model employs two pathways: a slow pathway for detect-
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Fig. 5. The mean training and validation accuracies per epoch
during the training of a binary classification model designed to
discern between the original and reverse videos.

ing semantic information and a fast pathway for captur-
ing motion. This signifies that two distinct timelines are
analyzed within the same model. Consequently, the Slow-
fast model, compared to other models, is expected to in-
corporate a substantial amount of temporal information in
the feature vector, resulting in the previous outcomes. It is
anticipated that X3D(U) yielded similar results due to the
complexity of the model compared to the data.

Fig 5 illustrates that as the number of epochs increases
during classifier training, the training accuracy shows a
consistent improvement, whereas the validation accuracy
stabilizes around 50%. These findings imply that although
the temporal ordering feature has the potential to be
learned, the existing video classification model’s feature
extractor fails to extract meaningful and comprehensive
temporal ordering features. In other words, enhancing the
feature extractor’s structure to capture temporal ordering
information effectively would result in more informative
feature vectors.

V. CONCLUSION

This paper emphasizes the need for more understanding
of temporal information by video classification models and
attributes this issue to the inadequate definition of tempo-
ral information within machine-learning based video clas-
sification problems. To address this limitation, the study
proposes a detailed approach that divides temporal infor-
mation into ‘Movement information’ and ‘Temporal order-
ing information’ and emphasizes the need for such distinc-
tion. To demonstrate this, we conducted experiments using
a novel approach, employing a Stack that eliminates tem-
poral information instead of the traditional method. Fur-
thermore, the study evaluated whether existing video clas-
sification models can capture ‘Temporal ordering informa-
tion’ through simple experiments. The findings revealed
that most models failed to effectively incorporate ‘Tempo-
ral ordering information,’ except in cases where the models
were significantly more complex than the data or specific

tricks were employed, such as increasing the temporal or-
der. The authors propose this novel perspective on defining
‘Temporal information’ in the context of video analysis to
facilitate the development of more robust video classifica-
tion models in future research endeavors.
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